www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Diskrete Mathematik" - Gruppe Z*21 explizit angeben
Gruppe Z*21 explizit angeben < Diskrete Mathematik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Diskrete Mathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gruppe Z*21 explizit angeben: Kontrolle
Status: (Frage) beantwortet Status 
Datum: 19:40 Mo 25.02.2019
Autor: magics

Aufgabe
Geben Sie die Gruppe [mm] $\IZ^{\*}_{21}$ [/mm] explizit als Menge an.

Hallo,

die Aufgabe mag trivial erscheinen, dennoch würde ich gerne mögliche Leichtigkeitsfehler ausschließen und euch bitten, mir zu sagen, ob das richtig ist:

Bei [mm] $\IZ^{\*}_{21}$ [/mm] handelt es sich um die zyklische Gruppe [mm] $\IZ/21\IZ \backslash \{0\} [/mm] = [mm] \{1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20\}$ [/mm]

Beste Grüße
Thomas

        
Bezug
Gruppe Z*21 explizit angeben: Antwort
Status: (Antwort) fertig Status 
Datum: 08:41 Di 26.02.2019
Autor: fred97


> Geben Sie die Gruppe [mm]\IZ^{\*}_{21}[/mm] explizit als Menge an.
>  Hallo,
>  
> die Aufgabe mag trivial erscheinen, dennoch würde ich
> gerne mögliche Leichtigkeitsfehler ausschließen und euch
> bitten, mir zu sagen, ob das richtig ist:
>  
> Bei [mm]\IZ^{\*}_{21}[/mm] handelt es sich um die zyklische Gruppe
> [mm]\IZ/21\IZ \backslash \{0\} = \{1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20\}[/mm]


$ [mm] \IZ^{\*}_{n} [/mm] $ ist zyklisch für $n=1,2,4, [mm] p^k, 2p^k$, [/mm] wobei p [mm] \ge [/mm] 3 und prim und k [mm] \ge [/mm] 1 , und keine anderen n.

$ [mm] \IZ^{\*}_{21} [/mm] $ ist also nicht zyklisch !

Ist nur nach der Menge gefragt ?

$ [mm] \IZ^{\*}_{21} [/mm] $ ist isomorph zu $ [mm] \IZ^{\*}_{3} \times \IZ^{\*}_{7} [/mm] .$


>  
> Beste Grüße
>  Thomas


Bezug
                
Bezug
Gruppe Z*21 explizit angeben: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:36 Di 26.02.2019
Autor: magics


> [mm]\IZ^{\*}_{n}[/mm] ist zyklisch für [mm]n=1,2,4, p^k, 2p^k[/mm], wobei p
> [mm]\ge[/mm] 3 und prim und k [mm]\ge[/mm] 1 , und keine anderen n.
>  
> [mm]\IZ^{\*}_{21}[/mm] ist also nicht zyklisch !

Ok.

> Ist nur nach der Menge gefragt ?

Ja

>  
> [mm]\IZ^{\*}_{21}[/mm] ist isomorph zu [mm]\IZ^{\*}_{3} \times \IZ^{\*}_{7} .[/mm]

[mm] $\IZ^{\*}_{21}=\{1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20\}$ [/mm] stimmt aber dennoch oder? In der Aufgabenstellung ist ja gar nicht von zyklischen Gruppen die Rede, das war nur eine falsche Schlussfolgerung von mir...

Gruß
Thomas


Bezug
                        
Bezug
Gruppe Z*21 explizit angeben: Antwort
Status: (Antwort) fertig Status 
Datum: 22:06 Di 26.02.2019
Autor: hippias

Du betrachtest das falsche Objekt: es ist die multiplikative Gruppe des Restklassenringes gemeint.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Diskrete Mathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]