www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra Sonstiges" - Gruppe
Gruppe < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gruppe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:44 Di 28.04.2009
Autor: D-C

Aufgabe
Ist das Paar (G,*) eine Gruppe, wobei G = {q [mm] \in \IQ [/mm] | q>0} und

* : G x G -> G , (x,y) [mm] \mapsto [/mm] xy

die übliche Multplikation in [mm] \IQ [/mm] ist ?

Hallo,

was genau muss man denn bei dieser Aufgabe zeigen und wie geht man dabei am besten vor? Mir scheint, als sollte man schauen, ob die Gruppenaxiome gelten, hab nur grade noch keine Idee, für einen Ansatz... vielleicht hat ja jemand einen Tipp für mich.

Gruß

D-C

        
Bezug
Gruppe: Antwort
Status: (Antwort) fertig Status 
Datum: 20:32 Di 28.04.2009
Autor: angela.h.b.

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

> Ist das Paar (G,*) eine Gruppe, wobei G = {q [mm]\in \IQ[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

| q>0}

> und
>  
> * : G x G -> G , (x,y) [mm]\mapsto[/mm] xy
>  
> die übliche Multplikation in [mm]\IQ[/mm] ist ?
>  Hallo,
>  
> was genau muss man denn bei dieser Aufgabe zeigen und wie
> geht man dabei am besten vor? Mir scheint, als sollte man
> schauen, ob die Gruppenaxiome gelten,

Hallo,

ja, genau das mußt Du tun.

Leg mal los.

Wie lauten die Gruppenaxiome, was hast Du schon zeigen können, falls es Probleme gibt: an welcher Stelle?

Gruß v. Angela



hab nur grade noch

> keine Idee, für einen Ansatz... vielleicht hat ja jemand
> einen Tipp für mich.
>  
> Gruß
>  
> D-C


Bezug
                
Bezug
Gruppe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:30 Di 28.04.2009
Autor: D-C

Die Gruppenaxiome sind doch laut Definition:

1. Assoziativität:
Für alle Gruppenelemente a, b und c gilt: (a * b) * c = a * (b * c).

2. Neutrales Element:
Es gibt ein neutrales Element e [mm] \in [/mm] G, mit dem für alle Gruppenelemente a gilt: a * e = e * a = a.

3. Inverses Element:
Zu jedem Gruppenelement a existiert ein Element a^-1 [mm] \in [/mm] G mit
a * a^-1 = a^-1 * a = e

!?
Nur wie wende ich diese jetzt so an, dass ich zeigen kann , dass (G,*) eine Gruppe ist?

Gruß

D-C

Bezug
                        
Bezug
Gruppe: Antwort
Status: (Antwort) fertig Status 
Datum: 22:36 Di 28.04.2009
Autor: abakus


> Die Gruppenaxiome sind doch laut Definition:
>  
> 1. Assoziativität:
> Für alle Gruppenelemente a, b und c gilt: (a * b) * c = a *
> (b * c).
>
> 2. Neutrales Element:
> Es gibt ein neutrales Element e [mm]\in[/mm] G, mit dem für alle
> Gruppenelemente a gilt: a * e = e * a = a.
>
> 3. Inverses Element:
> Zu jedem Gruppenelement a existiert ein Element a^-1 [mm]\in[/mm] G
> mit
> a * a^-1 = a^-1 * a = e
>  
> !?
>  Nur wie wende ich diese jetzt so an, dass ich zeigen kann
> , dass (G,*) eine Gruppe ist?

Hallo,
liefert die Multiplikation rationaler Zahlen wieder rationale Zahlen?
Gilt für die Mult. rationaler Zahlen das Assoziativgesetz?
Kann man eine rationale Zal mit einer anderen (mit welcher?) multiplizieren und erhält als Ergebnis wieder die erste Zahl?
...
Gruß Abakus

>  
> Gruß
>  
> D-C


Bezug
                                
Bezug
Gruppe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:21 Di 28.04.2009
Autor: D-C


>  liefert die Multiplikation rationaler Zahlen wieder
> rationale Zahlen?

Ja, positive oder negative, wobei ja hier nur q>0 betrachtet wird....

>  Gilt für die Mult. rationaler Zahlen das
> Assoziativgesetz?

Ja, für rationale Zahlen ist die Multiplikation ja kommutativ und assoziativ..

>  Kann man eine rationale Zal mit einer anderen (mit
> welcher?) multiplizieren und erhält als Ergebnis wieder die
> erste Zahl?

Ja, das müsste das neutrale Element der Multiplikation von rationalen Zahlen sein, nämlich die 1 :  a*1 = 1*a = a

Aber inwiefern bringt mich das jetzt weiter zum Beweis? ;)

Gruß

D-C



Bezug
                                        
Bezug
Gruppe: Antwort
Status: (Antwort) fertig Status 
Datum: 09:05 Mi 29.04.2009
Autor: angela.h.b.


> Aber inwiefern bringt mich das jetzt weiter zum Beweis? ;)

Hallo,

Du könntest jetzt mal nachschauen, von welchen der Axiome Du die Gültigkeit soeben bestätigt hast, überlegen, was noch fehlt, und über das Fehlende nachdenken.

Gruß v. Angela

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]