www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Gruppe
Gruppe < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gruppe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:23 So 18.11.2007
Autor: superstar

Aufgabe
Es sei V ein K-VR und U [mm] \subseteq [/mm] V ein Unterraum. Weiter sei ~ die Relation a~ b [mm] \gdw [/mm] (a-b) [mm] \in [/mm] U  und [v]_~ die Klasse von v.
a) Zeigen sie, dass (V/ ~,+) eine Gruppe ist, wobei [a]_~ + [b]_~ := [a+b]_~.
b) Zeigen sie, dass [mm] \pi [/mm] : V/~, v-> [v]_~ ein Gruppenhomomorphismus ist.

Hallo,
ich muss nachweisen, dass neutrale Element, das inverse Element und ob das Assoziativgesetz existiert. Aber wie?

zum A.gesetz)  a=a*e= a*( a^-1 *a) =(a*a^-1)*a=e*a
für alle a€V ein Inverses a^-1€G existiert, so dass a*a^-1=a^-1*a=e ist
ist das so richtig?
Ich weiß gar nicht weiter. Vielleicht kann mir jemand helfen?

        
Bezug
Gruppe: Antwort
Status: (Antwort) fertig Status 
Datum: 18:00 So 18.11.2007
Autor: andreas

hi

> zum A.gesetz)  a=a*e= a*( a^-1 *a) =(a*a^-1)*a=e*a
> für alle a€V ein Inverses a^-1€G existiert, so dass
> a*a^-1=a^-1*a=e ist
> ist das so richtig?

das hat nicht wirklich was mit dem assoziativ gesetz und meiner meinung nach auch nicht allzuviel mit der aufgabe zu tuen.

fangen wir mal mit dem wohl einfachsten an: überlege dir, dass es ein [mm] $[e]_\sim$ [/mm] gibt, welches als neutrales element der addition dienst.  da du ja schon eine gruppe gegebn hast, kann man sich ja mal überlegen, ob man mit dem neutralen element von dort etwas erreichen kann, also teste, ob [mm] $[0]_\sim \in V/\sim$ [/mm] das neutrale element ist, wobei $0 [mm] \in [/mm] V$ die null des vektorraums sei. nimm also ein beliebeiges [mm] $[a]_\sim \in V/\sim$. [/mm] dann gilt nach definition der addition auf den äquivalenzklassen: [mm] $[a]_\sim [/mm] + [mm] [0]_\sim [/mm] = [a + [mm] 0]_\sim$. [/mm] wenn es sich hier um das neutrale element handelt muss gelten, dass [mm] $[a]_\sim [/mm] = [a + [mm] 0]_\sim$. [/mm] ist dem so? überlege dir mal, ob man dass beim inversen element vielleicht ähnlich machen kann.


grüße
andreas

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]