www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Grundrechenarten kompl. Zahlen
Grundrechenarten kompl. Zahlen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grundrechenarten kompl. Zahlen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:16 So 08.08.2004
Autor: Overlord

Hi, ich bins nochmal !

Sry, hab schon wieder ne blöde Frage. Hab gerade versucht die Grundrechenregeln für die komplexen Zahlen herzuleiten. Addition und Subtraktion waren auch kein Problem, aber bei der Herleitung der Multiplikation taucht ein i*i auf, dass ich nicht rausbekomme.
Also:
(a;b)*(c;d)=(a+ib)*(c+id)=ac+aid+cib+iibd=(ac)+i(b+d+ibd)=... Hier bekomm ich aus dem Imaginärteil dieses i nicht heraus ( soll eben auf die Form (a*c-b*d;a*d+b*c) gebracht werden).

Bei der Division hab ich dasselbe Problem mit dem i, da stocke ich an folgender Stelle:
(a;b):(c;d)=...=(ac+aid+cib+iibd) / (cc-idd)

mfg, dark

Ich habe diese Frage in keinem weiteren Forum gestellt.

        
Bezug
Grundrechenarten kompl. Zahlen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:40 So 08.08.2004
Autor: andreas

hi dark


> Hab gerade versucht
> die Grundrechenregeln für die komplexen Zahlen herzuleiten.
> Addition und Subtraktion waren auch kein Problem, aber bei
> der Herleitung der Multiplikation taucht ein i*i auf, dass
> ich nicht rausbekomme.

es gilt ja [m] \sqrt{-1} = i [/m], also [m] i \cdot i = -1 [/m]

>  Also:
>  
> (a;b)*(c;d)=(a+ib)*(c+id)=ac+aid+cib+iibd=(ac)+i(b+d+ibd)=...
> Hier bekomm ich aus dem Imaginärteil dieses i nicht heraus
> ( soll eben auf die Form (a*c-b*d;a*d+b*c) gebracht
> werden).

wenn man nun obiges auf deine umformungen anwendet erhält man ja:
[m] (a;b)*(c;d)=(a+ib)*(c+id)=ac+aid+cib+iibd \\ =(ac + iibd) + i (ad + bc) = (ac - (-1)bd) + i (ad + bc) = (ac - bd; ad + bc) [/m]


> Bei der Division hab ich dasselbe Problem mit dem i, da
> stocke ich an folgender Stelle:
>  (a;b):(c;d)=...=(ac+aid+cib+iibd) / (cc-idd)

hier würde ich zuerst mit dem komplexkonjugierten des nenners [m] \overline{(c; d)} = (c; - d) = c - id [/m] erweitern, dann wird nämlich der nenner rein reell:
[m] \displaystyle{ \dfrac{(a; b)}{(c; d)} = \dfrac{(a + ib)(c - id) }{c^2 + icd - icd - i^2d^2} = \dfrac{ac + i(bc - ad) - i^2bd}{c^2 - (-1)d^2} = \dfrac{(ac + bd) + i(bc - ad)}{c^2 + d^2} } = \dfrac{ac + bd}{c^2 + d^2} + i \dfrac{bc - ad}{c^2 + d^2} \\ = \left(\dfrac{ac + bd}{c^2 + d^2} ; \dfrac{bc - ad}{c^2 + d^2} \right) } [/m]

schau mal, ob du das soweit nachvollzeihen kannst, sonst frage nochmal nach.

andreas

Bezug
                
Bezug
Grundrechenarten kompl. Zahlen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:10 So 08.08.2004
Autor: Overlord

Merci, vielen Dank !
Jab, jetz hab ichs geblickt. Bin nur net drauf gekommen i*i durch -1 zu ersetzen, ich idi... ^^

mfg, ovi

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]