www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Zahlentheorie" - Größenordnung f(n)=n
Größenordnung f(n)=n < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Größenordnung f(n)=n: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:55 So 15.05.2016
Autor: Trikolon

Hallo,

ich hätte eine Frage bzgl der durchschnittlichen Größenordnung der zahlentheoretischen Funktion f: [mm] \IN \to \IN [/mm]  f(n)=n (Identitätsfunktion). Wie kann ich diese bestimmen/herleiten? Bei der Funktion d(n) (Teileranzahlfunktion) ist es ja z.b g(n)=log(n)

        
Bezug
Größenordnung f(n)=n: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:27 Mo 16.05.2016
Autor: Trikolon

Hat niemand eine Idee hierzu?

Bezug
        
Bezug
Größenordnung f(n)=n: wozu ?
Status: (Antwort) fertig Status 
Datum: 22:58 Mo 16.05.2016
Autor: Al-Chwarizmi


> Hallo,
>  
> ich hätte eine Frage bzgl der durchschnittlichen
> Größenordnung der zahlentheoretischen Funktion f: [mm]\IN \to \IN[/mm]
>  f(n)=n (Identitätsfunktion). Wie kann ich diese
> bestimmen/herleiten? Bei der Funktion d(n)
> (Teileranzahlfunktion) ist es ja z.b g(n)=log(n)


Guten Abend

die Frage scheint mir ziemlich seltsam, da es hier ja
gar nicht nötig ist, auf künstliche Weise eine ungefähre
oder durchschnittliche "Größenordnung" anzugeben, da
ja unmittelbar und sogar ohne jegliche Rechnung der
exakte Funktionswert für jedes beliebige Argument
sofort feststeht:  eben der x-Wert selber !

Mit deinen Bezeichnungen ist für die Funktion f mit f(n)=n
offensichtlich auch g(n)=n

LG  ,   Al-Chw.




Bezug
                
Bezug
Größenordnung f(n)=n: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:55 Di 17.05.2016
Autor: Trikolon

Naja, per Definition ist ja die Mittelwertfunktion von einer zahlentheoretischen Fkt f gegeben durch
[mm] \bruch{1}{N}\summe_{n=1}^{N}f(n). [/mm] Im Fall von f(n)=n ergibt sich dann ja [mm] \bruch{N+1}{2}. [/mm] Ich frage mich halt, was man mit der alternativen Definition über die Integralrechnung (wie im eingangs geschilderten Fall) als Ergebnis erhält.



Bezug
                        
Bezug
Größenordnung f(n)=n: Antwort
Status: (Antwort) fertig Status 
Datum: 09:58 Di 17.05.2016
Autor: fred97


> Naja, per Definition ist ja die Mittelwertfunktion von
> einer zahlentheoretischen Fkt f gegeben durch
>  [mm]\bruch{1}{N}\summe_{n=1}^{N}f(n).[/mm] Im Fall von f(n)=n
> ergibt sich dann ja [mm]\bruch{N+1}{2}.[/mm] Ich frage mich halt,
> was man mit der alternativen Definition über die
> Integralrechnung


???  Wie schaut denn diese Definition aus ?


>  (wie im eingangs geschilderten Fall)

Da sehe ich nichts von dieser Art.

FRED

> als
> Ergebnis erhält.
>  
>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]