www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "stochastische Prozesse" - Grenzwertsätze
Grenzwertsätze < stoch. Prozesse < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "stochastische Prozesse"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwertsätze: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:29 So 30.08.2015
Autor: GirlyMaths

Hallo,

ich beschäftige mich zur Zeit mit stochastischen Verzweigungsprozessen und deren Wachstums- bzw. Aussterbegeschwindigkeit. Dafür habe ich drei Theoreme, gerade arbeite ich an dem für den superkritischen Fall von Kesten und Stigum. Dieses gibt mir ja Auskunft darüber, wie schnell [mm] $Z_n$ [/mm] gegen unendlich geht. Allerdings ist mir nicht klar, in welcher der drei Äquivalenzaussagen die Antwort enthalten ist.

Ich wäre euch sehr dankbar, wenn ihr mir das erklären könntet!
Liebe Grüße,
GirlyMaths

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Grenzwertsätze: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:33 So 30.08.2015
Autor: Thomas_Aut

Hallo,

Vielleicht wäre es hilfreich einen Link zu dem Theorem zu posten / bzw das Theorem hier mal zu schreiben.... das ist ein Teilgebiet der Mathematik, welches doch nicht sooo häufig angeschnitten wird.

Da fällt mir noch was ein - welche Prozesse betrachtest du ? Galton-Watson-Prozesse ?

Lg Thomas

Bezug
                
Bezug
Grenzwertsätze: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:50 Mo 31.08.2015
Autor: GirlyMaths

Hier kommt der Link zu dem Theorem:
http://www.ima.umn.edu/preprints/pp1994/1204.pdf

Netterweise ist dabei auch direkt der Beweis, den ich mir aneignen muss.
Aber zunächst zur Aussage des Theorems.

Und genau, es handelt sich um Galton-Watson-Prozesse ;-)

Liebe Grüße,
GirlyMaths

Bezug
        
Bezug
Grenzwertsätze: Antwort
Status: (Antwort) fertig Status 
Datum: 21:55 Mo 31.08.2015
Autor: Thomas_Aut

Hallo,

Das Theorem sagt dir, dass(für eine superkritischen Galton-Watson-Prozess) die Folge

[mm] $W_n [/mm] = [mm] Z_n \cdot m^{-n}$ [/mm]

gegen eine ZV W mit Erwartungswert 1 konvergiert.


[mm] Z_n [/mm] wächst also in gewisser Weise wie [mm] m^n [/mm]

Lg

Bezug
                
Bezug
Grenzwertsätze: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 17:37 Di 01.09.2015
Autor: GirlyMaths

Ganz lieben Dank für deine Antwort! Es hat klick gemacht :)

Könntest du mir noch die Frage beantworten, wieso wir den EW der log-Funktion mit einbeziehen? Was genau bringt uns der Logarithmus?

Dank dir!
GirlyMaths

Bezug
                        
Bezug
Grenzwertsätze: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 05:33 Do 10.09.2015
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "stochastische Prozesse"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]