Grenzwerte von Funktionen < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
|
Status: |
(Frage) beantwortet | Datum: | 19:22 Mo 28.04.2008 | Autor: | jboss |
Hallo MathePower,
danke für deine schnelle Antwort.
Habe jedoch noch Probleme mit Aufgabenteil d. Ich denke die Funktion konvergiert gegen 0.
Sei [mm] $x_n$ [/mm] eine beliebige Folge mit [mm] $\limes_{n\rightarrow\infty} x_n [/mm] = [mm] +\infty$
[/mm]
$ [mm] \limes_{n\rightarrow\infty} [/mm] (sin [mm] \wurzel{x_n + 1} [/mm] - sin [mm] \wurzel{x_n} [/mm] )$
$ = [mm] \limes_{n\rightarrow\infty} [/mm] (sin [mm] \wurzel{x_n(1 + \bruch{1}{x_n})} [/mm] - sin [mm] \wurzel{x_n} [/mm] )$
$ = [mm] \limes_{n\rightarrow\infty} [/mm] (sin [mm] \wurzel{x_n}\underbrace{\wurzel{1 + \bruch{1}{x_n}}}_{\to 1} [/mm] - sin [mm] \wurzel{x_n} [/mm] )$
$ = 0$
Stimmt das so?
Gruss Jakob
|
|
|
|
|
Hallo jboss,
> Hallo MathePower,
> danke für deine schnelle Antwort.
> Habe jedoch noch Probleme mit Aufgabenteil d. Ich denke die
> Funktion konvergiert gegen 0.
>
> Sei [mm]x_n[/mm] eine beliebige Folge mit
> [mm]\limes_{n\rightarrow\infty} x_n = +\infty[/mm]
>
> [mm]\limes_{n\rightarrow\infty} (sin \wurzel{x_n + 1} - sin \wurzel{x_n} )[/mm]
>
> [mm]= \limes_{n\rightarrow\infty} (sin \wurzel{x_n(1 + \bruch{1}{x_n})} - sin \wurzel{x_n} )[/mm]
> [mm]= \limes_{n\rightarrow\infty} (sin \wurzel{x_n}\underbrace{\wurzel{1 + \bruch{1}{x_n}}}_{\to 1} - sin \wurzel{x_n} )[/mm]
>
> [mm]= 0[/mm]
>
> Stimmt das so?
Ich glaube nicht
Schreibe den Ausdruck mal so:
[mm]\sin\left(\wurzel{x+1}\right)-\sin\left(\wurzel{x}\right)=\sin\left(a+b\right)-\sin\left(a-b\right)=2*\sin\left(b\right)*\cos\left(a\right)[/mm]
>
> Gruss Jakob
>
Gruss
MathePower
|
|
|
|