www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Grenzwerte von Folgen
Grenzwerte von Folgen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwerte von Folgen: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 19:30 Sa 17.11.2007
Autor: JanJan

Aufgabe
Zeigen Sie, dass die Folgen [mm] A_{t_{n}} [/mm] und [mm] N_{n} [/mm] streng monoton steigend sind und berechnen Sie die Grenzwerte der Folgen.

[mm] A_{t_{0}} [/mm] = 3; [mm] A_{t_{n+1}} [/mm] = [mm] 2A_{t_{n}} [/mm]  für n [mm] \in \IN [/mm]

[mm] N_{0}\in\IN \setminus{0}; N_{n+1} [/mm] = [mm] N_{n}+KN_{n}(G-N_{n}) [/mm] für n [mm] \in \IN [/mm]

G [mm] \in \IN; [/mm] G > [mm] N_{0}, [/mm] K [mm] \in \IR; [/mm] 0 < K < [mm] \bruch{1}{G} [/mm]

Meine Vermutung:

A hat keinen Grenzwert (exponentielles Wachstum).

N hat den Grenzwert G (logistisches Wachstum) ?

Hab aber keine Idee, wie ich das beweisen soll :(
Kann mir bitte jemand helfen? Vielen Dank schonmal ;)

        
Bezug
Grenzwerte von Folgen: Hinweise
Status: (Antwort) fertig Status 
Datum: 11:24 So 18.11.2007
Autor: Loddar

Hallo JanJan!


Wenn Du zeigst, dass eine Folge sowohl monoton als auch beschränkt ist, folgt daraus unmittelbar die Konvergenz.

Und bei rekursiven Darstellungen kann man dann folgenden Ansatz für den Grenzwert wählen:
$$A \ := \ [mm] \limes_{n\righarrow\infty}a_{n+1} [/mm] \ = \ [mm] \limes_{n\righarrow\infty}a_{n}$$ [/mm]
Dies in die entsprechende Rekursionsformel einsetzen und nach $A \ = \ ...$ auflösen.


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]