www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Grenzwerte" - Grenzwerte bestimmen
Grenzwerte bestimmen < Folgen+Grenzwerte < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwerte bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:00 So 20.01.2008
Autor: Toni908

Aufgabe
Für gegebene Folgen [mm] {a_{n}} [/mm] und [mm] {b_{n}} [/mm] gilt:

[mm] \limes_{n\rightarrow\infty}(4a_{n} [/mm] + [mm] 2b_{n}) [/mm] = 6
und

[mm] \limes_{n\rightarrow\infty}(a_{n} [/mm] - [mm] b_{n}) [/mm] = 1
Zeigen Sie, dass [mm] a_{n} [/mm] und [mm] b_{n} [/mm] Grenzwerte besitzen und ermitteln Sie diese!
b) Prüfen Sie auf Konvergenz und bestimmen Sie gegebenenfalls die Grenzwerte.
1) [mm] c_{n} [/mm] mit [mm] c_{n} [/mm] = [mm] 3^{n}2^{2n} [/mm]
2) [mm] d_{n} [/mm] mit [mm] d_{n} =\bruch{\wurzel{n}}{\wurzel{n+20}} [/mm]

c)Berechnen Sie folgende Grenzwerte von Funktionen:
1) [mm] \limes_{x\rightarrow\1} \bruch{x^{3}+x^{2}-x-1}{x+1} [/mm]
2) [mm] \limes_{x\rightarrow\1} \bruch{x^{3}+x^{2}-x-1}{x-1} [/mm]
3) [mm] \limes_{x\rightarrow\1} \bruch{x^{3}+x^{2}-x-1}{x^{2}-1} [/mm]

Hallo,

zu dieser Aufgabe habe ich keinen richtigen Lösungsansatz.

wie berechne ich bei a) in diesem fall die grenzwerte?

kann man bei b) mit dem majorantenkriterium arbeiten?

bei c) bräuchte ich nur einen richtigen ansatz, die aufgaben ähneln sich ja, da müsste ich das auch alleine hinbekommen

Lg Toni



        
Bezug
Grenzwerte bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:10 So 20.01.2008
Autor: Somebody


> Für gegebene Folgen [mm]{a_{n}}[/mm] und [mm]{b_{n}}[/mm] gilt:
>  
> [mm]\limes_{n\rightarrow\infty}(4a_{n}[/mm] + [mm]2b_{n})[/mm] = 6
>  und
>  
> [mm]\limes_{n\rightarrow\infty}(a_{n}[/mm] - [mm]b_{n})[/mm] = 1
>  Zeigen Sie, dass [mm]a_{n}[/mm] und [mm]b_{n}[/mm] Grenzwerte besitzen und
> ermitteln Sie diese!
>  b) Prüfen Sie auf Konvergenz und bestimmen Sie
> gegebenenfalls die Grenzwerte.
>  1) [mm]c_{n}[/mm] mit [mm]c_{n}[/mm] = [mm]3^{n}2^{2n}[/mm]
>  2) [mm]d_{n}[/mm] mit [mm]d_{n} =\bruch{\wurzel{n}}{\wurzel{n+20}}[/mm]
>  
> c)Berechnen Sie folgende Grenzwerte von Funktionen:
>  1) [mm]\limes_{x\rightarrow 1} \bruch{x^{3}+x^{2}-x-1}{x+1}[/mm]
>  
> 2) [mm]\limes_{x\rightarrow 1} \bruch{x^{3}+x^{2}-x-1}{x-1}[/mm]
>  3)
> [mm]\limes_{x\rightarrow 1} \bruch{x^{3}+x^{2}-x-1}{x^{2}-1}[/mm]
>  
> Hallo,
>  
> zu dieser Aufgabe habe ich keinen richtigen Lösungsansatz.
>  
> wie berechne ich bei a) in diesem fall die grenzwerte?
>  
> kann man bei b) mit dem majorantenkriterium arbeiten?
>  

Zu a) und b) siehe die Frage https://www.vorhilfe.de/read?i=354946 und meine Antwort darauf.

> bei c) bräuchte ich nur einen richtigen ansatz, die
> aufgaben ähneln sich ja, da müsste ich das auch alleine
> hinbekommen

Wenn der Wert $1$, gegen den $x$ gehen soll, keine Nullstelle des Nenners dieser gebrochen rationalen Terme in $x$ ist, dann ist's einfach: dann kannst Du einfach $1$ in Zähler und Nenner einsetzen und hast den Limes.

Falls der Wert $1$, gegen den $x$ gehen soll, jedoch eine Nullstelle des Nenners ist, dann gibt es zwei Fälle:
1. Fall: $1$ ist auch eine Nullstelle des Zählers, dann machst Du Faktorzerlegung und kürzst den Faktor $(x-1)$. Dann beginnst Du diese Überlegung von vorne...
2. Fall: $1$ ist keine Nullstelle des Zählers, dann existiert jedenfalls kein eigentlicher Grenzwert an dieser Stelle. Allenfalls existiert aber ein uneigentlicher Grenzwert, und zwar genau dann, wenn die Ordnung der Nullstelle $1$ des Nenners gerade ist (weil sich dann - und nur dann - bei dieser Polstelle $x=1$ das Vorzeichen des Terms nicht ändert).

Bezug
                
Bezug
Grenzwerte bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:21 So 20.01.2008
Autor: Toni908

Danke für deine Antwort!

zu C)

Das verstehe ich nicht ganz, könntest du mir das für eine Aufgabe als Beispiel zeigen?

ich habe noch vergessen hinzuschreiben, dass x [mm] \in \IR [/mm]

LG Toni

Bezug
                        
Bezug
Grenzwerte bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:45 So 20.01.2008
Autor: Somebody


> Danke für deine Antwort!
>  
> zu C)
>  
> Das verstehe ich nicht ganz, könntest du mir das für eine
> Aufgabe als Beispiel zeigen?
>  
> ich habe noch vergessen hinzuschreiben, dass x [mm]\in \IR[/mm]

Bei Deiner ursprünglichen Aufgabenstellung waren die Zahlen, gegen die $x$ beim Limes gehen soll, zudem nicht lesbar. Ich habe zwar versucht, dies zu korrigieren, bin aber nicht sicher, ob diese Korrektur richtig war: falls nicht, ist das Folgende wohl auch Schrott:

1)
[mm]\lim_{x\rightarrow 1}\frac{x^3+x^2-x-1}{x+1} = \frac{1^3+1^2-1-1}{1+1} = \frac{0}{1}=\underline{\underline{0}} [/mm]

Gebrochen-rationale Funktionen $f(x)$ sind ja stetig, so dass an denjenige Stellen [mm] $x_0$, [/mm] an denen sie überhaupt definiert sind, der Grenzwert [mm] $\lim_{x\rightarrow x_0}f(x)=f(x_0)$ [/mm] ist: was wir hier benutzt haben.

2) Nicht so einfach geht's, wenn eine gebrochen-rationale Funktion an der fraglichen Stelle nicht definiert ist, wie im folgenden Falle

[mm]\lim_{x\rightarrow 1}\frac{x^3+x^2-x-1}{x-1} = \lim_{x\rightarrow 1}\frac{(x-1)(x^2+2x+1)}{x-1}=\lim_{x\rightarrow 1}\frac{x^2+2x+1}{1}=1^2+2\cdot 1+1=\underline{\underline{4}}[/mm]


3)

[mm]\lim_{x\rightarrow 1}\frac{x^3+x^2-x-1}{x^2-1}=\lim_{x\rightarrow 1}\frac{(x-1)(x+1)^2}{(x-1)(x+1)}=\lim_{x\rightarrow 1}(x+1)=1+1=\underline{\underline{2}}[/mm]


Leider ist bei diesen Beispielen der Fall nicht dabei, dass sich der problematische Faktor $(x-1)$ nicht aus dem Nenner wegkürzen lässt. In diesem Falle wäre nämlich der Grenzwert entweder [mm] $\pm \infty$ [/mm] (also uneigentlich) oder er würde überhaupt nicht existieren (weil dann links- und rechtsseitiger uneigentlicher Grenzwert verschieden wären).

Bezug
                                
Bezug
Grenzwerte bestimmen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:01 So 20.01.2008
Autor: Toni908

Ich hatte eigentlich x gegen 1 eingegeben, keine Ahnung warum es nicht angezeigt wurde. jedenfalls x gegen 1 ist korrekt.

Folglich sind deine Antworten auch richtig und helfen mir erstmal weiter um das zu verstehen.

so schwer ist es dann doch nicht, wie ich dachte.

Ich werd mich jetzt ma hinsetzen und das nochmal durchkauen. hoffentlich bringts was.

Vielen Dank.

Gruß Toni

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]