www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionen" - Grenzwerte berechnen
Grenzwerte berechnen < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwerte berechnen: tipp
Status: (Frage) beantwortet Status 
Datum: 22:13 Do 03.12.2009
Autor: Steirer

Aufgabe
Berechnen sie die folgende Grenzwerte:

[mm] \limes_{x\rightarrow\1} \bruch{x^{\alpha}-1}{ln(x)} [/mm]

Also ich hab mir folgendes bis jetzt überlegt:

ich ersetze x mit t+1

[mm] \limes_{x\rightarrow\1} \bruch{(t+1)^{\alpha}-1}{ln(t+1)} [/mm]

NR:

[mm] (t+1)^{\alpha}=\summe_{n=0}^{\alpha}\vektor{\alpha \\ n}t^n [/mm]

jetzt sollte ich mir mit hilfe des binomischen lehrsatzes eine summenformel aufstellen können sehe aber die lösung nicht bzw wenn diese stimmt dann kann ich damit leider nichts anfangen.

[mm] =\vektor{\alpha \\ 0}*t^{\alpha}+\vektor{\alpha \\ 1}*t^{\alpha-1}+....+\vektor{\alpha \\ \alpha-1}*t+\vektor{\alpha \\ \alpha}*1 [/mm]

Danke.

lg

        
Bezug
Grenzwerte berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:59 Do 03.12.2009
Autor: kuemmelsche

Hallo,

ich hab gesehen, dass du eine andere Frage über den Satz von de l'Hospital gestellt hast.

Wenn ich mir $ [mm] \limes_{x\rightarrow 1} \bruch{x^{\alpha}-1}{ln(x)} [/mm] $ so ansehe, dann ist [mm] $1^\alpha [/mm] - 1 = ln(1) = 0$. Und was sagt dir dass dann?

Falls du (wenn das überhaupt so leicht gehen sollte) über den Binomischen Satz zum Ziel kommen willst, dann würde ich den $ln(x)$ mal versuchen zu entwickeln, damit du da auch auf Polynome kommst. Aber ich denke nicht, dass das so erfolgsversprechend ist.

lg Kai

Bezug
                
Bezug
Grenzwerte berechnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:14 Do 03.12.2009
Autor: Steirer


> Hallo,
>  
> ich hab gesehen, dass du eine andere Frage über den Satz
> von de l'Hospital gestellt hast.
>  
> Wenn ich mir [mm]\limes_{x\rightarrow 1} \bruch{x^{\alpha}-1}{ln(x)}[/mm]
> so ansehe, dann ist [mm]1^\alpha - 1 = ln(1) = 0[/mm]. Und was sagt
> dir dass dann?
>

Danke

ok also ich hab eine funktion der form [mm] "\bruch{0}{0}" [/mm] danke für den hinweis.
Also kann ich l'hospital drauf anwenden.
Jetzt würde mich nur interessieren wie du von  [mm]1^\alpha - 1 = ln(1)[/mm] kommst?

lg

> Falls du (wenn das überhaupt so leicht gehen sollte) über
> den Binomischen Satz zum Ziel kommen willst, dann würde
> ich den [mm]ln(x)[/mm] mal versuchen zu entwickeln, damit du da auch
> auf Polynome kommst. Aber ich denke nicht, dass das so
> erfolgsversprechend ist.
>  
> lg Kai

Bezug
                        
Bezug
Grenzwerte berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 23:19 Do 03.12.2009
Autor: reverend

Hallo steirer,

das ist sozusagen etwas lax formuliert. Zähler und Nenner gehen für [mm] x\to{1} [/mm] eben gegen Null, wie Dir inzwischen ja sicher auch klar ist...

lg
reverend

Bezug
                        
Bezug
Grenzwerte berechnen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:28 Do 03.12.2009
Autor: kuemmelsche


> > Hallo,
>  >  
> > ich hab gesehen, dass du eine andere Frage über den Satz
> > von de l'Hospital gestellt hast.
>  >  
> > Wenn ich mir [mm]\limes_{x\rightarrow 1} \bruch{x^{\alpha}-1}{ln(x)}[/mm]
> > so ansehe, dann ist [mm]1^\alpha - 1 = ln(1) = 0[/mm]. Und was sagt
> > dir dass dann?
>  >

> Danke
>  
> ok also ich hab eine funktion der form [mm]"\bruch{0}{0}"[/mm] danke
> für den hinweis.
>  Also kann ich l'hospital drauf anwenden.
>  Jetzt würde mich nur interessieren wie du von  [mm]1^\alpha - 1 = ln(1)[/mm]
> kommst?

Ich denke auf diese Frage ist die einfachste Antwort: "Weils so is^^"

Der $ln(1)=0$, genauso wie $1-1=0$.

>  
> lg
>  > Falls du (wenn das überhaupt so leicht gehen sollte)

> über
> > den Binomischen Satz zum Ziel kommen willst, dann würde
> > ich den [mm]ln(x)[/mm] mal versuchen zu entwickeln, damit du da auch
> > auf Polynome kommst. Aber ich denke nicht, dass das so
> > erfolgsversprechend ist.
>  >  
> > lg Kai  

lg Kai


Bezug
                                
Bezug
Grenzwerte berechnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:34 Do 03.12.2009
Autor: Steirer


> > > Hallo,
>  >  >  
> > > ich hab gesehen, dass du eine andere Frage über den Satz
> > > von de l'Hospital gestellt hast.
>  >  >  
> > > Wenn ich mir [mm]\limes_{x\rightarrow 1} \bruch{x^{\alpha}-1}{ln(x)}[/mm]
> > > so ansehe, dann ist [mm]1^\alpha - 1 = ln(1) = 0[/mm]. Und was sagt
> > > dir dass dann?
>  >  >

> > Danke
>  >  
> > ok also ich hab eine funktion der form [mm]"\bruch{0}{0}"[/mm] danke
> > für den hinweis.
>  >  Also kann ich l'hospital drauf anwenden.
>  >  Jetzt würde mich nur interessieren wie du von  
> [mm]1^\alpha - 1 = ln(1)[/mm]
> > kommst?
>  
> Ich denke auf diese Frage ist die einfachste Antwort:
> "Weils so is^^"
>  
> Der [mm]ln(1)=0[/mm], genauso wie [mm]1-1=0[/mm].
>

das ist mir schon klar.

nur die beziehung [mm]1^\alpha - 1 = ln(1) = 0[/mm] kann ich mir nicht wirklich erklären, ich seh da irgendwie keinen zusammenhang.

lg

> >  

> > lg
>  >  > Falls du (wenn das überhaupt so leicht gehen sollte)

> > über
> > > den Binomischen Satz zum Ziel kommen willst, dann würde
> > > ich den [mm]ln(x)[/mm] mal versuchen zu entwickeln, damit du da auch
> > > auf Polynome kommst. Aber ich denke nicht, dass das so
> > > erfolgsversprechend ist.
>  >  >  
> > > lg Kai  
>
> lg Kai
>  

Bezug
                                        
Bezug
Grenzwerte berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 00:07 Fr 04.12.2009
Autor: leduart

Hallo
Wenn 2 Sachen 0 sind sind sie auch gleich dann muss man nicht hinschreiben 1-1=0 und ln(1)= 0 sondern kann schreiben [mm] 1-1=x^2-x^2=Hans-Hans=ln1=0 [/mm]
weiter ist nix dabei!
Gruss leduart

Bezug
                                                
Bezug
Grenzwerte berechnen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 02:25 Fr 04.12.2009
Autor: Steirer

Habe ich auch gleich nach dem posting erkannt :) . War ein langer Tag, danke fürs erklären von etwas offensichtlichen ;) .

lg

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]