www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Grenzwerte bei Funktionen
Grenzwerte bei Funktionen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwerte bei Funktionen: Definitionsfrage
Status: (Frage) beantwortet Status 
Datum: 18:41 Mi 03.08.2005
Autor: Bastiane

Hallo!
Kann mir bitte mal jemand sagen, was folgende Definition aussagt? Irgendwie blicke ich da nicht so ganz durch:

Sei [mm] f:D\to\IR [/mm] eine reelle Funktion auf [mm] D\subset\IR [/mm] und [mm] a\in\IR [/mm] ein Punkt derart, dass es mindestens eine Folge [mm] (a_n)_{n\in\IN}, a_n\in [/mm] D, gibt mit [mm] \lim_{n\to\infty}a_n=a. [/mm] (Dies ist z. B. für [mm] a\in [/mm] D erfüllt.) Man schreibt

[mm] \lim_{x\to a}f(x)=c, [/mm]

falls für jede Folge [mm] (x_n)_{n\in\IN}, x_n\in [/mm] D, mit [mm] \lim_{n\to\infty}x_n=a [/mm] gilt:

[mm] \lim_{n\to\infty}f(x_n)=c. [/mm]

Hier soll der Grenzwert für Funktionen definiert werden, aber so eine Definition habe ich noch nie gesehen. Vielleicht könnte das jemand kurz mit Worten erklären?

Viele Grüße
Bastiane
[banane]


        
Bezug
Grenzwerte bei Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:13 Mi 03.08.2005
Autor: Hanno

Hallo Christiane!

Zugegebenermaßen, ich finde diese Definition auch ein wenig verquert. Nichtsdestotrotz trägt sie ihren Namen zu recht, denn die Aussage

(1) FÜr alle Folgen [mm] $(x_n)_{n\in\IN}, x_n\in [/mm] D$, [mm] $\lim_{n\to\infty} x_n [/mm] = a$ ist [mm] $\lim_{n\to\infty} f(x_n)=c$. [/mm]

ist äquivalent zu

(2) Für alle [mm] $\epsilon\in\IR^+$ [/mm] existiert ein [mm] $\delta\in\IR^+$ [/mm] mit [mm] $\vert f(x)-c\vert <\epsilon$ [/mm] für alle [mm] $x\in (a-\delta,a+\delta)$. [/mm]
Letztere Aussage ist es, die du wahrscheinlich eher mit der Kurzform [mm] $\lim_{x\to a} [/mm] f(x)=c$ assoziiert hättest.

Hier eine kleine Ergänzung, für dich hoffenltich nur Erinnerung: wenn eine der beiden obigen Aussagen gilt, sagen wir $f$ konvergiere gegen $c$ für $x$ gegen $a$. Wir sagen, $f$ sei stetig im Punkt $a$, wenn [mm] $a\in [/mm] D$ und $f(a)=c$ gilt.

Nun, die Äquivalenz von beiden Aussagen muss natürlich erstmal beweisen werden. Weil ich glaube, dass Beweise immer beim Verständnis helfen, und letztere ja unser größte Ziel ist (*schwafel* ;) ), hier der Beweis für die Äquivalenz beider Aussagen:

Sei [mm] $\lim_{x\to a} [/mm] f(x)=c$ im Sinne von (2) und [mm] $(x_n)_{n\in\IN},x_n\in [/mm] D$ konvergent gegen $a$. Für beliebiges [mm] $\epsilon\in\IR^+$ [/mm] existiert nun nach Voraussetzung ein [mm] $\delta$ [/mm] mit [mm] $\vert f(x)-c\vert <\epsilon$ [/mm] für alle [mm] $x\in (a-\delta,a+\delta)$. [/mm] Da [mm] $(x_n)_{n\in\IN}\to [/mm] a$, existiert ein [mm] $n_\delta\in\IN$ [/mm] so, dass für alle [mm] $n\geq n_\delta$ [/mm] stets [mm] $x_n\in (a-\delta,a+\delta)$ [/mm] gilt. Es folgt [mm] $\vert f(x_n)-c\vert <\epsilon$, [/mm] was [mm] $f(x_n)\to [/mm] a$ d.h. [mm] $\lim_{x\to a} [/mm] f(x)=c$ im Sinne von (1) bedeutet.

Sei nun umgekehrt [mm] $\lim_{x\to a} [/mm] f(x)=c$ im Sinne von (1) und nehmen wir an, Aussage (2) sein nicht wahr. Dann gäbe es ein [mm] $\epsilon\in\IR^+$ [/mm] so, dass für alle [mm] $\delta\in\IR^+$ [/mm] ein [mm] $x_\delta\in (a-\delta,a+\delta)$ [/mm] mit [mm] $\vert f(x_\delta)-c\vert \not< \epsilon$. [/mm] Die Folge [mm] $(x_{\frac{1}{n}})_{n\in\IN}$ [/mm] konvergiert dann gegen $a$ und es folgt [mm] $f(x_n)\to [/mm] c$; insbesondere gibt es ein [mm] $n_\epsilon$ [/mm] so, dass für alle [mm] $n_0

Ich hoffe ich konnte dir helfen.


Liebe Grüße,
Hanno

Bezug
                
Bezug
Grenzwerte bei Funktionen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:36 Mi 03.08.2005
Autor: Bastiane

Hallo Hanno!
> Zugegebenermaßen, ich finde diese Definition auch ein wenig
> verquert. Nichtsdestotrotz trägt sie ihren Namen zu recht,
> denn die Aussage
>  
> (1) FÜr alle Folgen [mm](x_n)_{n\in\IN}, x_n\in D[/mm],
> [mm]\lim_{n\to\infty} x_n = a[/mm] ist [mm]\lim_{n\to\infty} f(x_n)=c[/mm].
>  
> ist äquivalent zu
>
> (2) Für alle [mm]\epsilon\in\IR^+[/mm] existiert ein [mm]\delta\in\IR^+[/mm]
> mit [mm]\vert f(x)-c\vert <\epsilon[/mm] für alle [mm]x\in (a-\delta,a+\delta)[/mm].
>  
> Letztere Aussage ist es, die du wahrscheinlich eher mit der
> Kurzform [mm]\lim_{x\to a} f(x)=c[/mm] assoziiert hättest.

Ist (2) dann die eher gebräuchliche Form? Dann werde ich mir diese auch mal merken. ;-)

> erstmal beweisen werden. Weil ich glaube, dass Beweise
> immer beim Verständnis helfen, und letztere ja unser größte

Naja, also mir helfen Beweis selten beim Verständnis, ich finde sie oft so verwirrend, dass ich sie lieber überlese... Ich finde Beispiele immer toll. :-)
  
Aber was sagt (1) denn dann in Worten aus? Kann man das nicht irgendwie formulieren? Auch wenn du mir jetzt bewiesen hast, dass es äquivalent zu (2) ist, kann ich mir unter (1) noch immer nicht wirklich was vorstellen, und dann wird es mir schwer fallen, mir diese Definition zu merken...

Viele Grüße
Christiane
[hand]


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]