www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionen" - Grenzwerte bei Funktionen
Grenzwerte bei Funktionen < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwerte bei Funktionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:45 So 30.12.2007
Autor: Wurzel2

Aufgabe
Zeigen sie,dass aus der Existenz von [mm] \limes_{x \to \ 0^+}f\left( \bruch{1}{x} \right) [/mm] die Existenz von [mm] \limes_{x \to \ + \infty}f(x) [/mm] folgt und umgekehrt, sowie [mm] \limes_{x \to \ 0^+}f\left( \bruch{1}{x} \right) [/mm] = [mm] \limes_{x \to \ + \infty}f(x) [/mm]  

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Ich habe leider keine Ahnung, wie das hier gehen soll.

        
Bezug
Grenzwerte bei Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:11 Mo 31.12.2007
Autor: angela.h.b.


> Zeigen sie,dass aus der Existenz von [mm]\limes_{x \to \ 0^+}f\left( \bruch{1}{x} \right)[/mm]
> die Existenz von [mm]\limes_{x \to \ + \infty}f(x)[/mm] folgt und
> umgekehrt, sowie [mm]\limes_{x \to \ 0^+}f\left( \bruch{1}{x} \right)[/mm]
> = [mm]\limes_{x \to \ + \infty}f(x)[/mm]

> Ich habe leider keine Ahnung, wie das hier gehen soll.  

Hallo,

schade, daß Du nicht mitteilst, woran Du scheiterst.
Es wäre gut zu wissen, was Du Dir bisher überlegt hast, beachte bitte auch in Zukunft, daß wir von Dir Lösungsansätze erwarten.


Tip:

Sei [mm] c:=\limes_{x \to \ 0^+}f\left( \bruch{1}{x} \right) [/mm]

Behauptung: dann ist auch [mm] \limes_{x \to \ + \infty}f(x)=c. [/mm]

Für den Beweis mußt Du ja zeigen, daß für jede Folge [mm] (y_n), [/mm] die gegen [mm] \infty [/mm] konvergiert, die Folge der Funktionswerte gegen c geht.

Sei nun [mm] (y_n) [/mm] solch eine Folge.

Überlege Dir, daß ab einem bestimmten Folgenglied die [mm] y_n [/mm] ungleich 0 sind, und betrachte die Folge

[mm] (x_n) [/mm] mit [mm] x_n:= \bruch{1}{y_n}. [/mm]

Gruß v. Angela



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]