www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Grenzwerte
Grenzwerte < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwerte: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 18:55 Fr 25.02.2011
Autor: mathefreak89

Aufgabe
Bestimmen sie zu [mm] \epsilon=\bruch{1}{100} [/mm] ein [mm] n_c \ge [/mm] 1 , so dass
[mm] \left| 1-\wurzel{1+\bruch{1}{n}}\right| \le [/mm] c gilt für jedes n [mm] \ge n_c. [/mm]


Ich komme bei dieser Aufgabe einfach nicht auf einen Ansatzpunkt. Ist [mm] \epsilon [/mm] jetz der Konvergenzradius ? Muss ich nen Grenzwert berechnen?? Wäre über Hilfe sehr dankbar

mfg Mathefreak
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Grenzwerte: Antwort
Status: (Antwort) fertig Status 
Datum: 19:08 Fr 25.02.2011
Autor: MathePower

Hallo mathefreak89,

> Bestimmen sie zu [mm]\epsilon=\bruch{1}{100}[/mm] ein [mm]n_c \ge[/mm] 1 , so
> dass
> [mm]\left| 1-\wurzel{1+\bruch{1}{n}}\right| \le[/mm] c gilt für
> jedes n [mm]\ge n_c.[/mm]
>  


Mit  "c" ist wohl "[mm]\epsilon[/mm]" gemeint.


> Ich komme bei dieser Aufgabe einfach nicht auf einen
> Ansatzpunkt. Ist [mm]\epsilon[/mm] jetz der Konvergenzradius ? Muss


[mm]\epsilon[/mm] ist die betragsmäßige  Differenz
der Folgenglieder zum Grenzwert 1.


> ich nen Grenzwert berechnen?? Wäre über Hilfe sehr
> dankbar
>
> mfg Mathefreak
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Gruss
MathePower

Bezug
                
Bezug
Grenzwerte: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:15 Fr 25.02.2011
Autor: mathefreak89

Und wie kann ich dann da mit der berechnung beginnen?
Ist das die Differenz zwischen jeweils 2 Gliedern?

Mfg

Bezug
                        
Bezug
Grenzwerte: Antwort
Status: (Antwort) fertig Status 
Datum: 19:24 Fr 25.02.2011
Autor: kamaleonti

Hallo und

[willkommenmr]

> Und wie kann ich dann da mit der berechnung beginnen?

$ [mm] \left| 1-\wurzel{1+\bruch{1}{n}}\right|=\left| \frac{(1-\wurzel{1+1/n})(1+\wurzel{1+1/n})}{1+\wurzel{1+1/n}}\right|=\left| \frac{-1/n}{1+\wurzel{1+1/n}}\right|<\frac{1}{2n} [/mm] $
Benutzt wurde die 3. binomische Formel.
Wähle nun n genügend groß, damit [mm] \frac{1}{2n}\leq\epsilon [/mm]

Gruß

Bezug
                                
Bezug
Grenzwerte: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:33 Fr 25.02.2011
Autor: abakus


> Hallo und
>
> [willkommenmr]
>  > Und wie kann ich dann da mit der berechnung beginnen?

>
> [mm]\left| 1-\wurzel{1+\bruch{1}{n}}\right|=\left| \frac{(1-\wurzel{1+1/n})(1+\wurzel{1+1/n})}{1+\wurzel{1+1/n}}\right|=\left| \frac{-1/n}{1+\wurzel{1+1/n}}\right|<\frac{1}{2n}[/mm]
>  
> Benutzt wurde die 3. binomische Formel.
>  Wähle nun n genügend groß, damit
> [mm]\frac{1}{2n}\leq\epsilon[/mm]
>  
> Gruß

Es geht auch ohne diesen Kunstgriff.
[mm] \left| 1-\wurzel{1+\bruch{1}{n}}\right|<0,01 [/mm] führt zu
[mm] \wurzel{1+\bruch{1}{n}}-1<0,01 [/mm]
[mm] \wurzel{1+\bruch{1}{n}}<1,01 [/mm]
[mm] 1+\bruch{1}{n}<1,0201 [/mm]
[mm] \bruch{1}{n}<0,0201 [/mm]
[mm] \bruch{1}{0,0201} Gruß Abakus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]