www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Analysis des R1" - Grenzwertberechnungen
Grenzwertberechnungen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwertberechnungen: Grenzwertberechnung
Status: (Frage) beantwortet Status 
Datum: 00:10 Do 02.02.2006
Autor: syntheticsw

Ich habe grundsätzliche Fragen zu Grenzwertberechnungen :

Meistens untersucht man ja lim n->+unendlich. für z.b. 1/n.
Mit den Grenzwertsätzen kann man ja auch komplizierte Formeln
in einfachere zerlegen.

1.
Was ist jetzt wenn ich anstatt für +unendlich, das für -unendlich
machen soll.

2.
Wie untersuche ich Grenzwerte nicht für gegen unendlich,
sondern für z.B. gegen einen bestimmten Punkt, z.B. einen Pol ?
z.B. x gegen x0 ?


Vielen Dank.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Grenzwertberechnungen: Antwort
Status: (Antwort) fertig Status 
Datum: 01:05 Do 02.02.2006
Autor: madde_dong

Hallo sytheticsw,

wenn du Grenzwerte betrachtest wie  [mm] \limes_{n\rightarrow-\infty}, [/mm] ändert sich eigentlich kaum etwas - abgesehen vom Vorzeichen. [mm] \bruch{1}{n} [/mm] geht immer noch gegen Null, n hingegen geht nun gegen [mm] -\infty. [/mm] Etwas komplizierter sind so Sachen wie  [mm] \limes_{n\rightarrow-\infty }{(-a)^n}, [/mm] da diese Folge für |a|>1 divergiert, für |a|<1 springt sie um ihren Grenzwert herum.
Wenn du Grenzwerte bei nicht [mm] \pm\infty [/mm] bestimmen möchtest, kannst du im einfachsten Fall einfach einsetzen, z.B.  [mm] \limes_{n\rightarrow 2}n²=4. [/mm]
Leider geht das nicht imer, z.B. bei  [mm] \limes_{n\rightarrow 1}\bruch{1}{n-1}. [/mm] In so einem Fall könnte man beispielsweise die Regel von l'Hospital anwenden, also anstatt  [mm] \limes_{x\rightarrow a} \bruch{f(x)}{g(x)} [/mm] = [mm] \limes_{x\rightarrow a} \bruch{f'(x)}{g'(x)} [/mm]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]