www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Sonstiges" - Grenzwertberechnung
Grenzwertberechnung < Sonstiges < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwertberechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:47 So 22.06.2008
Autor: Nicksve

Aufgabe
Zeigen Sie, gegen welchen Wert der Term strebt, für [mm] \limes_{n\rightarrow\infty} [/mm] a) (2n [mm] (2n+1)*b^2)/(3(n+1)^3) [/mm] + [mm] (-a/(n+1))^2 [/mm]
                                                        b) [mm] (n*b^2)/((n-1)^2) [/mm]


Ich habe diese Frage in keinen anderen Foren auf anderen Internetseiten gestellt.

Hallo!

Die Aufgabe kommt eigentlich aus der Statistik und dient dort zur Bestimmung der Konsistenz im quadratischen Mittel. Wir haben auch die Lösungen erhalten und zwar gilt sowohl für a) als auch für b) =0. Ich habe nur leider überhaupt keine Idee, wie man darauf kommt, dass beide Terme für [mm] \limes_{n\rightarrow\infty} [/mm] = 0 werden. Ich hoffe, mir kann hier jemand weiterhelfen! Ach ja [mm] b^2 [/mm] und a sind einfach Paramter für die keine Werte eingesetzt werden.

MfG

        
Bezug
Grenzwertberechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 18:00 So 22.06.2008
Autor: Somebody


> Zeigen Sie, gegen welchen Wert der Term strebt, für
> a) [mm]\limes_{n\rightarrow\infty}(2n (2n+1)*b^2)/(3(n+1)^3)+ (-a/(n+1))^2[/mm]
> b) [mm]\limes_{n\rightarrow\infty}(n*b^2)/((n-1)^2)[/mm]
>  
> Ich habe diese Frage in keinen anderen Foren auf anderen
> Internetseiten gestellt.
>  
> Hallo!
>  
> Die Aufgabe kommt eigentlich aus der Statistik und dient
> dort zur Bestimmung der Konsistenz im quadratischen Mittel.
> Wir haben auch die Lösungen erhalten und zwar gilt sowohl
> für a) als auch für b) =0. Ich habe nur leider überhaupt
> keine Idee, wie man darauf kommt, dass beide Terme für
> [mm]\limes_{n\rightarrow\infty}[/mm] = 0 werden. Ich hoffe, mir kann
> hier jemand weiterhelfen! Ach ja [mm]b^2[/mm] und a sind einfach
> Paramter für die keine Werte eingesetzt werden.

In diesen Fällen ist die Grenzwertebetrachtung einfach, denn bei a) ist der Zähler ein Polynom in $n$ vom 2. Grad, der Nenner aber ein Polynom in $n$ vom 3. Grad: daher geht dieser Bruchterm für [mm] $n\rightarrow \infty$ [/mm] gegen $0$. (Du kannst ja, wenn Du es genauer sehen willst, Zähler und Nenner nach Potenzen von $n$ geordnet hinschreiben und dann durch die grösste gemeinsame Potenz von Zähler und Nenner, hier also [mm] $n^2$, [/mm] teilen). Der Zähler geht bei a) dann gegen eine Konstante, der Nenner aber noch immer gegen [mm] $\infty$. [/mm]

Bei b) ist der Zähler ein Polynom in $n$ vom 1. Grad, der Zähler ein Polynom in $n$ vom 2. Grad: also geht auch dieser Bruchterm für [mm] $n\rightarrow \infty$ [/mm] gegen $0$. Auch bei diesem Beispiel mag es hilfreich sein, Zähler und Nenner zunächst beide durch $n$ zu teilen. Der Zähler geht dann für [mm] $n\rightarrow \infty$ [/mm] wieder gegen eine Konstante, der Nenner aber noch immer gegen [mm] $\infty$. [/mm]

Bezug
                
Bezug
Grenzwertberechnung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:13 So 22.06.2008
Autor: Nicksve

Danke für die schnelle Beantwortung der Frage!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]