www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Grenzwertberechnung
Grenzwertberechnung < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwertberechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:17 So 16.04.2006
Autor: Karl123

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo!
Könnt ihr mir sagen, ob folgende Aufgabe richtig gelöst ist?

- Berechnen Sie den Grenzwert folgender Reihe:
∑(von k=1 bis ∞) = 1/(k*(k-1))

Der Grenzwert berechnet sich doch nach der Formel 1/(1-q), wobei q hier gleich 1/2 ist, oder?

Meine Lösung:
[mm] \summe_{k=1}^{ \infty} [/mm] = 1/(k*(k-1)) = 0 + 1/2 + 1/6 + 1/12 + ...

= 1/(1-(1/2)) = 2

Jetzt kommt aber für k=1 ein nicht definierter Betrag (1/0) raus. Was mache ich da?
Vielen Dank.

        
Bezug
Grenzwertberechnung: Fehler
Status: (Antwort) fertig Status 
Datum: 13:40 So 16.04.2006
Autor: leduart

Hallo Karl

> Hallo!
>  Könnt ihr mir sagen, ob folgende Aufgabe richtig gelöst
> ist?

Falsch gelöst!  

> - Berechnen Sie den Grenzwert folgender Reihe:
>  ∑(von k=1 bis ∞) = 1/(k*(k-1))
>  
> Der Grenzwert berechnet sich doch nach der Formel 1/(1-q),
> wobei q hier gleich 1/2 ist, oder?

Nein, das ist der GW von  [mm]\summe_{k=1}^{ \infty}q^k[/mm]

> Meine Lösung:
>   [mm]\summe_{k=1}^{ \infty}[/mm] = 1/(k*(k-1)) = 0 + 1/2 + 1/6 +
> 1/12 + ...

keine zweirpotenzen!

> = 1/(1-(1/2)) = 2
>  
> Jetzt kommt aber für k=1 ein nicht definierter Betrag (1/0)
> raus. Was mache ich da?

Wenn die Summe wirklich von 1 anfängt, und im Nenner nicht k*(k+1)steht ist sie nicht definiert. Sieh die Aufgabenstellung noch mal nach! sonst ist die Lösg einfach: nicht definiert!
Gruss und schöne Ostern leduart

Bezug
        
Bezug
Grenzwertberechnung: Teleskopsumme
Status: (Antwort) fertig Status 
Datum: 18:25 So 16.04.2006
Autor: Loddar

Hallo Karl!


Von leduarts Einwand bezüglich Startwert und/oder dem Vorzeichen in der Summe mal abgesehen, lässt sich dies Reihe sonst in eine sogenannte Teleskopreihe zerlegen:

[mm] $\bruch{1}{k*(k-1)} [/mm] \ = \ [mm] \bruch{1}{k-1}-\bruch{1}{k}$ [/mm]     bzw.     [mm] $\bruch{1}{k*(k+1)} [/mm] \ = \ [mm] \bruch{1}{k}-\bruch{1}{k+1}$ [/mm]


Damit eliminieren sich nämlich die meisten Reihenglieder und der entsprechende Grenzwert lässt sich schnell bestimmen.


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]