www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Grenzwert von Partialsummenf.
Grenzwert von Partialsummenf. < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwert von Partialsummenf.: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 13:55 Mi 22.11.2006
Autor: RalU

Aufgabe
Bestimmen Sie die Summe s der folgenden Reihe als Grenzwert der Folge (sn) n E N ihrer Partialsummen:

geg: 1/(1*2)+1(2*3)+1/(3*4)+...=
Hinweis: 1/(k*(k+1))=1/k-1/(k+1)

Also mein Ansatz war bisher, dass ich mal ein paar Partialsummen gebildet habe.
Letztendlich hab ich eingesehen, dass der erste Teil des Hinweises eben exakt das darstellt, was der Grenzwert meiner Partialsummenfolge ist. richtig?
Also kann ich auch schreiben:
[mm] sn=\summe_{i=1}^{n}1/(k*(k+1)) [/mm]

Wenn ich davon jetzt den Limes bilde, komme ich auf das Ergebnis: [mm] \limes_{n\rightarrow\infty} \summe_{i=1}^{n}1/(k*(k+1))=0 [/mm]

Also wäre 0 mein gesuchter Grenzwert.

Ist das richtig? Oder ist der ganze Ansatz falsch. Was bringt mir der 2. Teil des Hinweises? Danke für Eure Hilfe...

        
Bezug
Grenzwert von Partialsummenf.: Antwort: edit
Status: (Antwort) fertig Status 
Datum: 12:03 Do 23.11.2006
Autor: Herby

Hallo,


der Grenzwert deiner Reihe ist 1.


Das zeigst du mit Hilfe der Partialbruchzerlegung  [mm] \bruch{1}{k*(k+1)}=\bruch{A}{k}+\bruch{B}{(k+1)} [/mm]


wenn du das hast, lässt du k gegen unendlich laufen und erhältst als Wert [mm] s_n=1 [/mm]


edit: hab grad noch gesehen, dass der "Hinweis" eine Zerlegung bereits überflüssig macht [bonk]


ok, dann setze den neuen Summanden ein und schreib' mal die ersten Glieder der Reihe auf - was erkennst du?

was bleibt übrig für k=n?



Liebe Grüße
Herby

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]