www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Exp- und Log-Funktionen" - Grenzwert uneigentl. Integrale
Grenzwert uneigentl. Integrale < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwert uneigentl. Integrale: Suche Hilfe zur Brechnung
Status: (Frage) beantwortet Status 
Datum: 18:09 Do 08.05.2008
Autor: Vertigoo

Aufgabe
Grenzwertbrechnung für die Funktion : [mm] \integral_{0}^{+\infty}{f(x) = e^{-x}dx} [/mm]

Die Funktion soll ein uneigentliches Integral darstellen.
Die Flächenberechnung für uneigentliche Integrale hab ich schon verstanden, nur die Grenzwertberechnung dieser macht mir zu schaffen.
Ich habe das komplette Internet nach Lösungsansätzen durchsucht aber keinen vernünftigen gefunden ihr seid meine letzte Hoffnung. Das kann doch nicht so schwer sein den Grenzwert eines uneigentlichen Integrals zu berechnen.
Ich bitte euch mir eine Lösung oder wenigstens einen Lösungsansatz zu geben.

edit: kann es sein das der Flächeninhalt des Intervalls schon der Grenzwert ist oder lieg ich da falsch?
mfg Jan

#
# Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Grenzwert uneigentl. Integrale: Antwort
Status: (Antwort) fertig Status 
Datum: 18:20 Do 08.05.2008
Autor: Sigrid

Hallo Vertigoo,

> Grenzwertbrechnung für die Funktion :
> [mm]\integral_{0}^{+\infty}{f(x) = e^{-x}dx}[/mm]
>  Die Funktion soll
> ein uneigentliches Integral darstellen.
>  Die Flächenberechnung für uneigentliche Integrale hab ich
> schon verstanden, nur die Grenzwertberechnung dieser macht
> mir zu schaffen.
>  Ich habe das komplette Internet nach Lösungsansätzen
> durchsucht aber keinen vernünftigen gefunden ihr seid meine
> letzte Hoffnung. Das kann doch nicht so schwer sein den
> Grenzwert eines uneigentlichen Integrals zu berechnen.
>  Ich bitte euch mir eine Lösung oder wenigstens einen
> Lösungsansatz zu geben.

Du berechnest erst einmal das Integral

[mm]\integral_{0}^{a}{f(x) = e^{-x}dx}[/mm]  mit a>0

Ich nehme an, eine Stammfunktion kennst Du, sonst: $ F(x) = [mm] -e^{-x} [/mm] $

Hast Du das Ergebnis?

Jetzt überlege Dir gegen welchen Wert das Integral geht, wenn a gegen $ + [mm] \infty [/mm] $ geht.

Wo genau hast Du hier Schwierigkeiten?

Gruß
Sigrid

>
> edit: kann es sein das der Flächeninhalt des Intervalls
> schon der Grenzwert ist oder lieg ich da falsch?

Das verstehe nicht nicht so ganz.

>  mfg Jan
>  
> #
>  # Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Bezug
                
Bezug
Grenzwert uneigentl. Integrale: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:30 Do 08.05.2008
Autor: Vertigoo

Ich vermute mal der Wert des Integrals strebt gegen 1

Bezug
                
Bezug
Grenzwert uneigentl. Integrale: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:24 Do 08.05.2008
Autor: Vertigoo

Ich komm immernoch auf kein ergebnis. bzw weiß nich ob es richtig ist.

ich hab jetzt in die Stammfunktion die grenzen eingesetzt und die obere von der unteren abgezogen für a hab ich einen hohen wert benutzt.
Es kommt -1 raus.
Ist das nun richtig oder hab ich generell falsch gerechnet?

Bezug
                        
Bezug
Grenzwert uneigentl. Integrale: Antwort
Status: (Antwort) fertig Status 
Datum: 20:47 Do 08.05.2008
Autor: schachuzipus

Hallo Vertigoo,

deine erste Vermutung ist schon die richtige, das Integral geht für [mm] $a\to\infty$ [/mm] gegen 1

Du musst beim Einsetzen der Grenzen nur ein bisschen mit den ganzen Vorzeichen aufpassen ;-)

Der Teil "mit a" geht dabei gegen Null, der Rest ist [mm] $-(-e^0)=\red{+}1$ [/mm]

Also [mm] $\int\limits_0^{\infty}{e^{-x} \ dx}=1$ [/mm] ist richtig

Gruß

schachuzipus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]