www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionen" - Grenzwert mit sin und cos
Grenzwert mit sin und cos < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwert mit sin und cos: tipp
Status: (Frage) beantwortet Status 
Datum: 11:46 Sa 21.06.2014
Autor: arbeitsamt

Aufgabe
Was stellt sich als “stationäre Lösung” ein, d.h. wie verhält sich die Lösung für t [mm] \to \infty? [/mm] Berechnen Sie die Amplitude der stationären Lösung und kommentieren Sie diesen Wert.

Die Aufgabe bezieht sich auf diese Lösung:

[mm] x(t)=e^{\bruch{-1}{3}*t}*(C_1cos(\bruch{2\wurzel{2}}{3}*t)+C_2*sin(\bruch{2\wurzel{2}}{3}*t))+\bruch{9}{16}cos(\bruch{\wurzel{7}}{3}*t)+\bruch{9\wurzel{7}}{16}sin(\bruch{\wurzel{7}}{3}*t) [/mm]

für  t [mm] \to \infty [/mm] geht folgender Term gegen 0

[mm] e^{\bruch{-1}{3}*t}*(C_1cos(\bruch{2\wurzel{2}}{3}*t)+C_2*sin(\bruch{2\wurzel{2}}{3}*t)) [/mm]

und der foglende Term hat keinen Grenzwert

[mm] \bruch{9}{16}cos(\bruch{\wurzel{7}}{3}*t)+\bruch{9\wurzel{7}}{16}sin(\bruch{\wurzel{7}}{3}*t) [/mm]

Ein teil der Lösung x(t) geht gegen Null und der andere teil hat keinen Grenzwert. Gegen was geht nun die Gesamte Lösung für  t [mm] \to \infty? [/mm]

        
Bezug
Grenzwert mit sin und cos: Antwort
Status: (Antwort) fertig Status 
Datum: 12:01 Sa 21.06.2014
Autor: reverend

Hallo arbeitsamt,

Du verstehst die Aufgabe m.E. falsch (s. Hervorhebung).

> Was stellt sich als “stationäre Lösung” ein, d.h. wie
> verhält sich die Lösung für t [mm]\to \infty?[/mm] Berechnen Sie
> die Amplitude der stationären Lösung und kommentieren Sie
> diesen Wert.
>  
> Die Aufgabe bezieht sich auf diese Lösung:
>  
> [mm]x(t)=e^{\bruch{-1}{3}*t}*(C_1cos(\bruch{2\wurzel{2}}{3}*t)+C_2*sin(\bruch{2\wurzel{2}}{3}*t))+\bruch{9}{16}cos(\bruch{\wurzel{7}}{3}*t)+\bruch{9\wurzel{7}}{16}sin(\bruch{\wurzel{7}}{3}*t)[/mm]
>  für  t [mm]\to \infty[/mm] geht folgender Term gegen 0
>  
> [mm]e^{\bruch{-1}{3}*t}*(C_1cos(\bruch{2\wurzel{2}}{3}*t)+C_2*sin(\bruch{2\wurzel{2}}{3}*t))[/mm]

Richtig.

> und der foglende Term hat keinen Grenzwert
>  
> [mm]\bruch{9}{16}cos(\bruch{\wurzel{7}}{3}*t)+\bruch{9\wurzel{7}}{16}sin(\bruch{\wurzel{7}}{3}*t)[/mm]

Der ist nun genauer zu betrachten.

> Ein teil der Lösung x(t) geht gegen Null und der andere
> teil hat keinen Grenzwert. Gegen was geht nun die Gesamte
> Lösung für  t [mm]\to \infty?[/mm]  

Es gibt keinen festen Grenzwert, aber die verbleibende Schwingung hat eine genau definierte Amplitude. Was weißt Du über die Superposition von Sinusschwingungen? Der Cosinusanteil ist ja leicht durch Phasenverschiebung in einen Sinus umzurechnen, und praktischerweise haben hier auch noch beide Funktionen die gleiche Periodenlänge.

Wie groß ist also die Amplitude?

Grüße
reverend

Bezug
                
Bezug
Grenzwert mit sin und cos: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:16 Sa 21.06.2014
Autor: arbeitsamt

hallo,

> Was weißt Du über die Superposition von Sinusschwingungen? Der
> Cosinusanteil ist ja leicht durch Phasenverschiebung in
> einen Sinus umzurechnen, und praktischerweise haben hier
> auch noch beide Funktionen die gleiche Periodenlänge.
>  
> Wie groß ist also die Amplitude?


[mm] \bruch{9}{16}cos(\bruch{\wurzel{7}}{3}*t)+\bruch{9\wurzel{7}}{16}sin(\bruch{\wurzel{7}}{3}*t) [/mm] = [mm] \bruch{9}{16}sin(\bruch{\wurzel{7}}{3}*t+\bruch{\pi}{2})+\bruch{9\wurzel{7}}{16}sin(\bruch{\wurzel{7}}{3}*t) [/mm]

kann ich hier die beiden sinus terme zusammenfassen trotz unterschiedlicher phasen?

Bezug
                        
Bezug
Grenzwert mit sin und cos: Antwort
Status: (Antwort) fertig Status 
Datum: 12:39 Sa 21.06.2014
Autor: leduart

Hallo
Wenn du A*sin(x) und [mm] B*sinx+\pi\2(x) [/mm] am Kreis ansiehst,hast du zwischen den Pfeilen 90°. statt die Projrtionen zu addieren addierst du die Pfeile un projizierst den Summenpfeil der Länge [mm] \sqrt{A^2+B^2} [/mm] das ist dir Gesamtamplitude,
also hast du  A*sin(x) [mm] +B*sin(x+\pi/2=) \sqrt{A^2+B^2}*sin(x+\phi) [/mm]
zeichne es Auf, dann kannst du auch ˜phi ablesen,
Gruß leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]