www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Grenzwert gebrochen rationale
Grenzwert gebrochen rationale < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwert gebrochen rationale: Tipp
Status: (Frage) beantwortet Status 
Datum: 11:27 Di 06.09.2011
Autor: Hoffmann79

Aufgabe
Skizzieren Sie das Bild der gebrochen rationalen Funktionen y = f(x) mit Hilfe der Achsenschnittpunkte, Pole, Lücken und des Verhaltens im Unendlichen!

[mm] f(x)=\bruch{(x+3)x}{(x+1)(x-4)x} [/mm]

Hallo,

hänge bei der Untersuchung der Polstellen fest.

Bisherige Ergebnisse:

- Zähker-Nst. [mm] x_{0}=-3 [/mm] -> Schnittpunkt Funktion mit x-Achse, kein Schnittpunkt mit y-Achse
- (hebbare) Lücke bei [mm] (0;-\bruch{3}{4}) [/mm]
- Polstellen [mm] x_{1}=-1, x_{2}=4 [/mm]

Polstellenuntersuchung:

[mm] x_{1}=-1: \limes_{x\rightarrow\ -1+0}\bruch{(x+3)}{(x+1)(x-4)} [/mm]

alternative Schreibweise

[mm] \limes_{x\rightarrow\ -1+h}\bruch{(x+3)}{(x+1)(x-4)} [/mm]

Und hier komme ich nicht weiter. Mein Ansatz:

x=-1+h  [mm] \limes_{h\rightarrow\ 0}\bruch{(-1+h+3)}{(-1+h+1)(-1+h-4)}=\limes_{h\rightarrow\ 0}\bruch{(h+2)}{h(h-5)} [/mm]

Ich könnte ein h im Zähler ausklammern, mit dem Nenner kürzen [mm] \limes_{h\rightarrow\ 0}\bruch{h(1+\bruch{2}{h})}{h(h-5)}, [/mm] da h gegen 0 geht, erhalte ich [mm] \limes_{h\rightarrow\ 0}\bruch{1}{h-5}, [/mm] somit wäre der Grenzwert [mm] -\bruch{1}{5} [/mm]

Irgendwie hab ich da rechentechnisch mit dem Grenzwert und der "h-Methode" einen Denkfehler. Könnte mir das jemand anhand obiger Aufgabe erklären bzw. mir den Fehler aufzeigen.




        
Bezug
Grenzwert gebrochen rationale: Antwort
Status: (Antwort) fertig Status 
Datum: 11:49 Di 06.09.2011
Autor: fencheltee


> Skizzieren Sie das Bild der gebrochen rationalen Funktionen
> y = f(x) mit Hilfe der Achsenschnittpunkte, Pole, Lücken
> und des Verhaltens im Unendlichen!
>  
> [mm]f(x)=\bruch{(x+3)x}{(x+1)(x-4)x}[/mm]
>  Hallo,
>  
> hänge bei der Untersuchung der Polstellen fest.
>
> Bisherige Ergebnisse:

hallo,
du fängst eigentlich erst mit dem def- und wertebereich an, dann versuchst du hebbare lücken zu finden. danach machst du mit dieser "neuen" funktion die diskussion.

>  
> - Zähker-Nst. [mm]x_{0}=-3[/mm] -> Schnittpunkt Funktion mit
> x-Achse, kein Schnittpunkt mit y-Achse

die hebbare lücke verursacht doch einen schnittpunkt mit der y-achse

>  - (hebbare) Lücke bei [mm](0;-\bruch{3}{4})[/mm]
>  - Polstellen [mm]x_{1}=-1, x_{2}=4[/mm]

[ok]

>  
> Polstellenuntersuchung:
>  
> [mm]x_{1}=-1: \limes_{x\rightarrow\ -1+0}\bruch{(x+3)}{(x+1)(x-4)}[/mm]
>  
> alternative Schreibweise
>  
> [mm]\limes_{x\rightarrow\ -1+h}\bruch{(x+3)}{(x+1)(x-4)}[/mm]
>  
> Und hier komme ich nicht weiter. Mein Ansatz:
>  
> x=-1+h  [mm]\limes_{h\rightarrow\ 0}\bruch{(-1+h+3)}{(-1+h+1)(-1+h-4)}=\limes_{h\rightarrow\ 0}\bruch{(h+2)}{h(h-5)}[/mm]
>  
> Ich könnte ein h im Zähler ausklammern, mit dem Nenner
> kürzen [mm]\limes_{h\rightarrow\ 0}\bruch{h(1+\bruch{2}{h})}{h(h-5)},[/mm]
> da h gegen 0 geht, erhalte ich [mm]\limes_{h\rightarrow\ 0}\bruch{1}{h-5},[/mm]
> somit wäre der Grenzwert [mm]-\bruch{1}{5}[/mm]

was tust du hier? du schreibst oben, dass du eine polstelle bei -1 hast, und wunderst dich dann nicht, dass du keinen grenzwert von [mm] \pm\infty [/mm] erhälst?!
du musst doch nur den links- und rechtsseitigen grenzwert an der stelle untersuchen, um zu sagen ob es links von der polstelle eine positive oder negative steigung gibt

>  
> Irgendwie hab ich da rechentechnisch mit dem Grenzwert und
> der "h-Methode" einen Denkfehler. Könnte mir das jemand
> anhand obiger Aufgabe erklären bzw. mir den Fehler
> aufzeigen.
>  
>
>  


gruß tee

Bezug
                
Bezug
Grenzwert gebrochen rationale: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:57 Di 06.09.2011
Autor: Hoffmann79

Hallo tee,

natürlich wundere ich mich, deswegen ist der von mir berechnete GW von [mm] -\bruch{1}{5} [/mm] auch Unsinn, deswegen ja auch mein Post. Meine Frage ist die, kann ich denn rechentechnisch zeigen, dass die Funktion an den Polstellen gegen [mm] \pm \infty [/mm] läuft? Dieses eben über den GW an den Stellen. Nur wie?

Bezug
                        
Bezug
Grenzwert gebrochen rationale: Antwort
Status: (Antwort) fertig Status 
Datum: 12:29 Di 06.09.2011
Autor: fencheltee


> Hallo tee,
>  
> natürlich wundere ich mich, deswegen ist der von mir
> berechnete GW von [mm]-\bruch{1}{5}[/mm] auch Unsinn, deswegen ja
> auch mein Post. Meine Frage ist die, kann ich denn
> rechentechnisch zeigen, dass die Funktion an den Polstellen
> gegen [mm]\pm \infty[/mm] läuft? Dieses eben über den GW an den
> Stellen. Nur wie?

achso, dann ist die frage nicht so ganz klar gewesen :-)
also du hattest ja $ [mm] x_{1}=-1: \limes_{x\rightarrow\ -1}\bruch{(x+3)}{(x+1)(x-4)} [/mm] $

gehst du nun von links an die polstelle ran:
[mm] \limes_{x\rightarrow\ -1^-}\bruch{\overbrace{(x+3)}^{>0}}{\underbrace{(x+1)}_{-0}\underbrace{(x-4)}_{<0}}=\infty [/mm]

und rechts davon
[mm] \limes_{x\rightarrow\ -1^+}\bruch{\overbrace{(x+3)}^{>0}}{\underbrace{(x+1)}_{+0}\underbrace{(x-4)}_{<0}}=-\infty [/mm]

du musst also nur schauen, welches vorzeichen der quotient erhält, bevor du "durch 0 teilst"

gruß tee

Bezug
                                
Bezug
Grenzwert gebrochen rationale: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:48 Di 06.09.2011
Autor: Hoffmann79

Hallo tee,

vielleicht war es auch mein Fehler, indem ich meine Frage nicht konkret formuliert habe. Ich glaube, ich habe den GW rechnerisch falsch angewendet bzw. einfach falsch interpretiert. Habe einfach "brutal" die jeweiligen Grenzen eingesetzt und kam daher auf kein "vernünftiges" Ergebnis.

[mm] x_{1}=1: \limes_{x\rightarrow\ -1+0}\bruch{(x+3)}{(x+1)(x-4)}=\limes_{x\rightarrow\ -1+0}\bruch{(-1+0+3)}{(-1+0+1)(-1+0-4)}=\bruch{2}{0(-5)} [/mm] und mit dem letzten Ausdruck wird der Nenner 0.

Der Grenzwert nähert sich aber der 0 an, wird aber nie 0 und das ist/war mein Fehler.

[mm] \limes_{x\rightarrow\ -1+0}\bruch{(x+3)}{(x+1)(x-4)}=\limes_{x\rightarrow\ -1+0}\bruch{-1+0,000...1+3}{(-1+0,000...1+1)(-1+0,000...1-4)}=\bruch{(2,000...1)}{0,000...1(-5,000...1)} [/mm] -

der Nenner wird hier immer größer und in dem Fall sogar negativ -> [mm] \limes_{x\rightarrow\ -1+0}f(x)=-\infty [/mm]

Bezug
                                        
Bezug
Grenzwert gebrochen rationale: Antwort
Status: (Antwort) fertig Status 
Datum: 11:07 Mi 07.09.2011
Autor: reverend

Hallo,

> vielleicht war es auch mein Fehler, indem ich meine Frage
> nicht konkret formuliert habe. Ich glaube, ich habe den GW
> rechnerisch falsch angewendet bzw. einfach falsch
> interpretiert. Habe einfach "brutal" die jeweiligen Grenzen
> eingesetzt und kam daher auf kein "vernünftiges" Ergebnis.

Wenn man das könnte, bräuchte man keine Grenzwertbetrachtung. Die führt man doch gerade an solchen Stellen durch, wo der Funktionswert nicht definiert ist

> [mm]x_{1}=1: \limes_{x\rightarrow\ -1+0}\bruch{(x+3)}{(x+1)(x-4)}=\limes_{x\rightarrow\ -1+0}\bruch{(-1+0+3)}{(-1+0+1)(-1+0-4)}=\bruch{2}{0(-5)}[/mm]
> und mit dem letzten Ausdruck wird der Nenner 0.
>
> Der Grenzwert nähert sich aber der 0 an, wird aber nie 0
> und das ist/war mein Fehler.

Ja, gut erkannt.

> [mm]\limes_{x\rightarrow\ -1+0}\bruch{(x+3)}{(x+1)(x-4)}=\limes_{x\rightarrow\ -1+0}\bruch{-1+0,000...1+3}{(-1+0,000...1+1)(-1+0,000...1-4)}=\bruch{(2,000...1)}{0,000...1(-5,000...1)}[/mm]
> -
>
> der Nenner wird hier immer größer und in dem Fall sogar
> negativ -> [mm]\limes_{x\rightarrow\ -1+0}f(x)=-\infty[/mm]  

Das ist faktisch die "h-Methode", die Du in Deinem ersten Post erwähnst. Man setzt das h ein und überlegt sich, was mit dem zu untersuchenden Term geschieht, wenn das h "sich der Null nähert" - und das eben auch noch einmal auf der positiven Seite und einmal auf der negativen. Die beiden Grenzwerte müssen ja nicht gleich sind (und sind es hier auch nicht).

Das gleiche musst Du an der Stelle x=4 auch noch machen; das Ergebnis wird dort genau umgekehrt sein. ;-)

Grüße
reverend


Bezug
                                                
Bezug
Grenzwert gebrochen rationale: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:14 Mi 07.09.2011
Autor: Hoffmann79

Vielen Dank allen Beteiligten ;-)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]