www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Grenzwert einer Summe
Grenzwert einer Summe < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwert einer Summe: Vorbereitung zum Studium
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 13:02 Sa 15.08.2009
Autor: Sword

Aufgabe
[mm] \summe_{i=0}^{n}\bruch{1}{4*2^{x}} [/mm]
Wie groß ist der Wert, wenn man unbegrenzt addiert

hallo allerseits^^

da ich bald Physik studieren möchte, wurde mir ein Mathe-Vorkurs empfohlen. Dazu ließen sich einige Übungsaufgaben im Internet finden. Darunter war unter anderem auch diese Frage zu finden, deren Art ich in meiner Schulzeit bislang noch nicht begegnet bin.

Nun weißt die Aufgabenstellung ja darauf hin, dass eine Konvergenz besteht, da ja ein Grenzwert gefunden werden soll. Betrachtet man die Funktion ohne die Summe, geht diese gegen 0.

Ich habe mal einige Regeln versucht anzuwenden (kleiner Gauß etc.) jedoch scheint keine davon so wirklich zu passen. Folglich komme ich leider nicht umhin, nach dem Ansatz zu fragen^^

Gibt es da neben dem "scharfen anschauen" der ersten Ergebnisse und dem Raten einer möglichen Regel, die man dann induktiv beweisen darf, bzw. dem nachschlagen im Regelwerk weitere Methoden, diese Grenzwerte zu bestimmen?

Würde ich nämlich dieses "scharfe Ansehen und Raten" benutzen, käme ich auf die Formel [mm] \bruch{0,5*2^{n+2}-1}{2^{n+2}}. [/mm] dabei käme dann durch das Grenzwertverfahren [mm] \bruch{0,5*2^{n+2}}{2^{n+2}}-\bruch{1}{2^{n+2}}=0,5-\bruch{1}{2^{n+2}}==>\limes_{n\rightarrow\infty}0,5-\bruch{1}{2^{n+2}}=0,5-\bruch{1}{\infty}==>0,5 [/mm] raus. Nur gefällt mir Raten nicht sonderlich, weil man das so schlecht verallgemeinern kann.

mit freundlichen Grüßen
Sword

        
Bezug
Grenzwert einer Summe: Antwort
Status: (Antwort) fertig Status 
Datum: 13:13 Sa 15.08.2009
Autor: barsch

Hi,


> $ [mm] \summe_{i=0}^{n}\bruch{1}{4\cdot{}2^{x}} [/mm] $

du meinst bestimmt

$ [mm] \summe_{i=0}^{n}\bruch{1}{4\cdot{}2^{\red{i}}} [/mm] $

Es ist

$ [mm] \summe_{i=0}^{n}\bruch{1}{4\cdot{}2^{\red{i}}} [/mm] $

[mm] =\bruch{1}{4}*\summe_{i=0}^{n}\bruch{1}{2^{\red{i}}} [/mm]

[mm] =\bruch{1}{4}*\summe_{i=0}^{n}(\bruch{1}{2})^{\red{i}} [/mm]

Es liegt eine geometrische Reihe vor. Wie du deren Wert berechnen kannst, findest du zum Beispiel []hier.

Gruß barsch

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]