www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Grenzwerte" - Grenzwert einer Funktion
Grenzwert einer Funktion < Folgen+Grenzwerte < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwert einer Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:15 So 09.04.2006
Autor: Kylie04

Aufgabe
  Berrechene den Grenzwert von der Funktion $f(x)= x- 6* [mm] \wurzel{x}$ [/mm]
für $x [mm] \to \infty$. [/mm]

Ich habe es versucht mit den Grenzwertsätzen zu lösen, aber es kommt eine unbestimmte Form raus.
Deswegen glaube ich man kann es mit Vergleichen lösen, z.B
$ 6* [mm] \wurzel{x}> [/mm] x- 6* [mm] \wurzel{x}$ [/mm] oder so ähnlich.  Wenn man das schaubild anguckt, dann sieht man dass die Funktion gegen unendlich geht.
Danke für Hilfe.


        
Bezug
Grenzwert einer Funktion: Kleiner Tipp
Status: (Antwort) fertig Status 
Datum: 12:20 So 09.04.2006
Autor: Zwerglein

Hi, Kylie,

>  Berechne den Grenzwert von der Funktion [mm]f(x)= x- 6* \wurzel{x}[/mm]

Einfach mal [mm] \wurzel{x} [/mm] ausklammern!
Dann erkennt man sofort, dass f(x) gegen [mm] +\infty [/mm] geht.

mfG!
Zwerglein  


Bezug
                
Bezug
Grenzwert einer Funktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:51 So 09.04.2006
Autor: Kylie04

Vielen Dank für eure Hilfe! :-)


Bezug
        
Bezug
Grenzwert einer Funktion: Anderer Tipp
Status: (Antwort) fertig Status 
Datum: 12:25 So 09.04.2006
Autor: Disap

Guten Morgen.

>  Berrechene den Grenzwert von der Funktion [mm]f(x)= x- 6* \wurzel{x}[/mm]
>  
> für [mm]x \to \infty[/mm].
>  Ich habe es versucht mit den
> Grenzwertsätzen zu lösen, aber es kommt eine unbestimmte
> Form raus.
>  Deswegen glaube ich man kann es mit Vergleichen lösen,
> z.B
>  [mm]6* \wurzel{x}> x- 6* \wurzel{x}[/mm] oder so ähnlich.  Wenn man
> das schaubild anguckt, dann sieht man dass die Funktion
> gegen unendlich geht.
>  Danke für Hilfe.

Statt die [mm] \wurzel{x} [/mm] auszuklammern, kann man sich aber auch anders helfen.
In diesem Fall gilt wie auch bei den ganzrationalen Funktionen für den Grenzwert, dass der höchste Exponent dominiert. Und da [mm] \wurzel{x} [/mm] das selbe ist wie [mm] x^{\bruch{1}{2}}, [/mm] gilt

[mm] \limes_{x\rightarrow\infty} \red{x^1}-6x^{\bruch{1}{2}} [/mm] = [mm] \red{\infty} [/mm]

D. h. das x mit dem größten Exponenten (eins) gibt hier den Verlauf an.

Liebe Grüße
Disap

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]