www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Grenzwerte" - Grenzwert bestimmen
Grenzwert bestimmen < Folgen+Grenzwerte < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwert bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:30 Di 17.01.2006
Autor: vicky

Aufgabe
Bestimmen Sie den größtmöglichen Definitionsbereich der folgenden Funktion in [mm] \IR [/mm] und den angegebenen Grenzwert.

[mm] \limes_{x\rightarrow\infty} [/mm] = [mm] 2x-\wurzel{4x²-x} [/mm]

Hallo,

also für den Definitionsbereich habe ich D= [mm] \IR [/mm]  ohne (0, [mm] \bruch{1}{4}) [/mm] ermittelt. Nun geht es nur noch um den Grenzwert. Es soll  [mm] \bruch{1}{4} [/mm] rauskommen doch die Zwischenschritte sind mir unklar. Muß ich da z.B. die erste Ableitung berechnen?

Vielen Dank für eure Hilfe
Gruß Vicky

        
Bezug
Grenzwert bestimmen: Hinweis
Status: (Antwort) fertig Status 
Datum: 19:08 Di 17.01.2006
Autor: MathePower

Hallo Vicky,

[willkommenmr]

> Bestimmen Sie den größtmöglichen Definitionsbereich der
> folgenden Funktion in [mm]\IR[/mm] und den angegebenen Grenzwert.
>  
> [mm]\limes_{x\rightarrow\infty}[/mm] = [mm]2x-\wurzel{4x²-x}[/mm]
>  Hallo,
>  
> also für den Definitionsbereich habe ich D= [mm]\IR[/mm]  ohne (0,
> [mm]\bruch{1}{4})[/mm] ermittelt. Nun geht es nur noch um den

[ok]

> Grenzwert. Es soll  [mm]\bruch{1}{4}[/mm] rauskommen doch die
> Zwischenschritte sind mir unklar. Muß ich da z.B. die erste
> Ableitung berechnen?

Da hast Du erstmal einen unbestimmten Ausdruck "[mm]\infty\;-\;\infty[/mm]", da

[mm] \begin{gathered} \mathop {\lim }\limits_{x \to \infty } \;2\;x\; = \;\infty \hfill \\ \mathop {\lim }\limits_{x \to \infty } \;\sqrt {4\;x^2 \; - \;x} \; = \;\infty \hfill \\ \end{gathered} [/mm]

Um den Grenzwert für [mm]x\;\to\;\infty[/mm] zu berechnen, bringst Du den Ausdruck

[mm] \mathop {\lim }\limits_{x \to \infty } \;f(x)\; - \;g(x)\; = \;\mathop {\lim }\limits_{x \to \infty } \;\frac{{\frac{1} {{g(x)}}\; - \;\frac{1} {{f(x)}}}} {{\frac{1} {{f(x)}}\;\frac{1} {{g(x)}}}}[/mm]

auf diese Form. Dieser Ausdruck hat dann die Form "[mm]\bruch{0}{0}[/mm]", womit Du die Regeln von LHospital anwenden kannst.

Also für Zähler und Nenner getrennt die Ableitungen berechnen, und dann diesen Ausdruck untersuchen.

Gruß
MathePower




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]