www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Grenzwert berechnen
Grenzwert berechnen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwert berechnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:15 Di 14.07.2009
Autor: ms2008de

Aufgabe
Bestimmen Sie folgenden Grenzwert: [mm] \limes_{n\rightarrow\infty} \bruch{(n^{2}+1)\wurzel{n^{2}+2}}{n^{3}} [/mm]

Hallo,
hab ziemliche Probleme bei dieser Aufgabe. Aso rein intuitiv würd ich mal sagen der Grenzwert müsste 1 sein. Mit de l´Hospital komm ich wohl nicht weiter.
Nun zu dem, wie weit ich bisher gekommen bin: [mm] \limes_{n\rightarrow\infty} \bruch{(n^{2}+1)\wurzel{n^{2}+2}}{n^{3}} [/mm] = [mm] \limes_{n\rightarrow\infty} \bruch{(\bruch{1}{n^{2}}+1)(n^{2}+2)}{n\wurzel{n^{2}+2}}= \limes_{n\rightarrow\infty} \bruch{n+ \bruch{3}{n}+\bruch{2}{n^{2}}}{\wurzel{n^{2}+2}}, [/mm] und an der Stelle weiß ich nun nicht mehr, wie ich den Grenzwert weiter zeigen soll. Mir selbst is klar, dass [mm] \wurzel{n^{2}+2} [/mm] wohl gegen n konvergiert.
Hoffe mir kann jmd. weiterhelfen. Möglicherweise gibts ja einen einfachen Ansatz, den ich nicht sehe.
Vielen Dank schon mal im voraus

Viele Grüße

        
Bezug
Grenzwert berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 23:26 Di 14.07.2009
Autor: schachuzipus

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Hallo ms2008de,

zunächst: Bitte immer deine post vor dem Abschicken mit "Vorschau" auf Fehler checken ...


>  
> Bestimmen Sie folgenden Grenzwert:
> \limes_{n\rightarrow\infty} \bruch{(n^{2}+1)\wurzel{n^{2}+2}}{n^{3}}

>  Hallo,
> hab ziemliche Probleme bei dieser Aufgabe. Aso rein
> intuitiv würd ich mal sagen der Grenzwert müsste 1 sein.
> Mit de l´Hospital komm ich wohl nicht weiter.
>  Nun zu dem, wie weit ich bisher gekommen bin:
> \limes_{n\rightarrow\infty} \bruch{(n^{2}+1)\wurzel{n^{2}+2}}{n^{3}} = \limes_{n\rightarrow\infty} \bruch{(\bruch{1}{n^{2}}+1)(n^{2}+2)}}{n\wurzel{n^{2}+2}}=  \limes_{n\rightarrow\infty} \bruch{n+
> \bruch{3}{n}+\bruch{2}{n^{2}}{\wurzel{n^{2}+2}}, und an der
> Stelle weiß ich nun nicht mehr, wie ich den Grenzwert
> weiter zeigen soll. Mir selbst is klar, dass
> \wurzel{n^{2}+2} wohl gegen n konvergiert.
>  Hoffe mir kann jmd. weiterhelfen. Möglicherweise gibts ja
> einen einfachen Ansatz, den ich nicht sehe.
>  Vielen Dank schon mal im voraus

Ich hab's versucht zu flicken, aber es sind zuviele bugs drin ...

Das, was ich meine aus dem Quelltext herauslesen zu können, ist, dass

$\lim\limits_{n\to\infty}\frac{(n^2+1)\sqrt{n^2+2}}{n^3}$ zu bestimmen ist

Falls dem so ist, klammere erstmal unter der Wurzel $n^2$ aus, hole es mit dem Wurzelgesetz $\sqrt{ab}=\sqrt{a}\sqrt{b}$ heraus, dann im Zähler ausmultiplizieren und anschließend $n^3$ ausklammern ...



>  
> Viele Grüße

LG

schachuzipus

Bezug
                
Bezug
Grenzwert berechnen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:44 Di 14.07.2009
Autor: ms2008de

dankeschön, und damit is der Grenzwert tatsächlich 1

Bezug
                        
Bezug
Grenzwert berechnen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:46 Di 14.07.2009
Autor: schachuzipus

Salut

> dankeschön, und damit is der Grenzwert tatsächlich 1

Ouais!

LG

schachuzipus


Bezug
        
Bezug
Grenzwert berechnen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:47 Di 14.07.2009
Autor: Marcel

Hallo,

> Mir selbst is klar, dass
> [mm]\wurzel{n^{2}+2}[/mm] wohl gegen n konvergiert.

das macht doch keinen Sinn. Wenn $n [mm] \to \infty$ [/mm] strebt, dann divergiert [mm] $n\,$ [/mm] doch gerade bestimmt gegen [mm] $\infty\,.$ [/mm] Was Du versuchst, zu sagen, ist, dass sich [mm] $\sqrt{n^2+2}$ [/mm] für große [mm] $n\,$ [/mm] im Wesentlichen wie [mm] $n\,$ [/mm] verhält.. wobei das auch noch sehr lasch ausgedrückt ist.
Etwas mathematischer wird's schonmal, wenn man den von Schachuzipus vorgeschlagenen Weg einhält und
[mm] $$\sqrt{n^2+2}=n*\sqrt{1+\frac{2}{n^2}}$$ [/mm]
benutzt. Wobei man dann für das weiteres Argumentieren auch z.B. die Stetigkeit der Wurzelfunktion benützen könnte...

Gruß,
Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]