www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Grenzwert Wurzelfolge
Grenzwert Wurzelfolge < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwert Wurzelfolge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:01 Di 17.11.2009
Autor: feix

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt. Brauche Hilfe bei der Lösung der Grenzwerte für die Folgen:
[mm] an:=\wurzel[n]{a^{n}+b^{n}} [/mm]  mit a,b reel+

und  

bn:= (1- [mm] \bruch{1}{n^{3}})^{n} [/mm]

Mit dem Hinweis: Verwenden Sie für  (bn) die Bernoullische Ungleichung.

Bitte um Hilfe

        
Bezug
Grenzwert Wurzelfolge: Antwort
Status: (Antwort) fertig Status 
Datum: 13:10 Di 17.11.2009
Autor: schachuzipus

Hallo Felix und [willkommenmr],

Wir freuen uns immer, wenn wir mit einem kurzen "Hallo" begrüßt werden und mit einem "lg" verabschiedet ...

> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt. Brauche Hilfe bei der Lösung der
> Grenzwerte für die Folgen:
> [mm]an:=\wurzel[n]{a^{n}+b^{n}}[/mm]  mit a,b reel+
>  
> und  
>
> bn:= (1- [mm]\bruch{1}{n^{3}})^{n}[/mm]
>  
> Mit dem Hinweis: Verwenden Sie für  (bn) die Bernoullische
> Ungleichung.
>
> Bitte um Hilfe

Nun, für die Folge [mm] $b_n$ [/mm] steht doch der Hinweis schon da.

Wie lautet die Bernoullische Ungleichung?

Was gibt das für deine Folge?

Damit und mit einer größeren elementaren Folge kannst du die Folge [mm] $b_n$ [/mm] einquetschen zwischen 2 Folgen, die gegen 1 konvergieren für [mm] $n\to\infty$. [/mm]

Damit konvergiert [mm] $b_n$ [/mm] nach dem Sandwichlemma ebenfalls gegen 1 für [mm] $n\to\infty$ [/mm]

Für die Folge [mm] $a_n$ [/mm] nimm mal ohne Beschränkung der Allgemeinheit an, dass $b>a$ ist und klammere [mm] $b^n$ [/mm] aus und ziehe es aus der Wurzel ...

LG

schachuzipus


Bezug
                
Bezug
Grenzwert Wurzelfolge: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:28 Di 17.11.2009
Autor: feix


> Wir freuen uns immer, wenn wir mit einem kurzen "Hallo"
> begrüßt werden und mit einem "lg" verabschiedet ...
>  

Bitte um Verzeihung, war mein erster Beitrag.. daher hier von mir erstmal ein Hallo...
Habe falsche Definition für die Bernoullische Ungleichung aufgeschrieben.
Aber mit der richtigen,
für jede reelle Zahl x [mm] \ge [/mm] − 1 und jede nicht negative ganze Zahl n [mm] \ge [/mm] 0 gilt

    [mm] (1+x)^n \geq [/mm] 1+nx

sollte es doch klappen.
Vielen Dank für die super schnelle Antwort.
LG



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]