www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Grenzwert Nachweis
Grenzwert Nachweis < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwert Nachweis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:28 Do 31.10.2013
Autor: phychem

Hallo


Ich soll beweisen, dass [mm] \vektor{n \\ k} [/mm] und [mm] \bruch{n^k}{k!} [/mm] für festes [mm] k\in\IN [/mm] asymptotisch gleich sind, also dass die Quotientenfolge gegen 1 konvergiert.

Es ist also zu zeigen, dass

[mm] \bruch{n^k*(n-k)!}{n!} [/mm]

gegen 1 konvergiert. Dieser Bruch lässt sich ja kürzen zu:

[mm] \bruch{n^k}{n*(n-1)*...*(n-k+1)} [/mm]

Dieser is offensichtlich nach unten beschränkt durch 1. Aber das ist auch schon alles, was ich bisher hab. Irgendwie gelingt mir der Konvergenznachweis einfach nicht....am einfachsten wäre es wohl eine Folge zu finden, deren n-tes Glied jeweils alle grössergleich dem obigen Quotient ist und die gegen 1 konvergiert. Aber ich find einfach keine solche Folge...

Kann mir hier jemand weiterhelfen?

        
Bezug
Grenzwert Nachweis: Antwort
Status: (Antwort) fertig Status 
Datum: 15:01 Do 31.10.2013
Autor: Fulla

Hallo phychem!

> Hallo

>
>

> Ich soll beweisen, dass [mm]\vektor{n \\ k}[/mm] und [mm]\bruch{n^k}{k!}[/mm]
> für festes [mm]k\in\IN[/mm] asymptotisch gleich sind, also dass die
> Quotientenfolge gegen 1 konvergiert.

>

> Es ist also zu zeigen, dass

>

> [mm]\bruch{n^k*(n-k)!}{n!}[/mm]

>

> gegen 1 konvergiert. Dieser Bruch lässt sich ja kürzen
> zu:

>

> [mm]\bruch{n^k}{n*(n-1)*...*(n-k+1)}[/mm]

>

> Dieser is offensichtlich nach unten beschränkt durch 1.
> Aber das ist auch schon alles, was ich bisher hab.
> Irgendwie gelingt mir der Konvergenznachweis einfach
> nicht....am einfachsten wäre es wohl eine Folge zu finden,
> deren n-tes Glied jeweils alle grössergleich dem obigen
> Quotient ist und die gegen 1 konvergiert. Aber ich find
> einfach keine solche Folge...

>

> Kann mir hier jemand weiterhelfen?


Nimm lieber den Kehrwert:
[mm]\bruch{n*(n-1)*...*(n-k+1)}{n^k}=\frac{n}{n}*\frac{n-1}{n}*\ldots *\frac{n-k+1}{n}[/mm]

Nach dem Kürzen kannst du bequem den Grenzwert für [mm]n\to\infty[/mm] berechnen.


Lieben Gruß,
Fulla

Bezug
                
Bezug
Grenzwert Nachweis: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:07 Do 31.10.2013
Autor: phychem

Ahja, das ist wirklich viel einfacher. Einfach noch jeden Bruch durch n kürzen, Grenzwertsätze anwenden und fertig.

Danke, damit hat sich die Frage erledigt.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]