www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Grenzwerte" - Grenzwert Log-Problem
Grenzwert Log-Problem < Folgen+Grenzwerte < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwert Log-Problem: ?richtig
Status: (Frage) beantwortet Status 
Datum: 14:49 Sa 11.03.2006
Autor: masaat234

Hallo

[mm] \bruch{log x- p}{p*x} [/mm] -der log ist zur basis 2 !-

Definitionslücke=0, denn 0*x =0
Pol=0 , denn log 0 - p =-p (log von null ist nicht definiert, ist das richtig??) u
             Zähler ungleich null u. Nenner=0

1.Gibts hier Nulstellen, wenn ja wie findet man die raus?
2.welchen punkt haben alle funktionen der funktionschar f(p) gemeinsam u. wie findet man die raus ?


Grüße
masaat


        
Bezug
Grenzwert Log-Problem: Antwort
Status: (Antwort) fertig Status 
Datum: 16:31 Sa 11.03.2006
Autor: mathmetzsch

Hallo,

das mit den Nullstellen ist einfach:

Kriterium ist f(x)=0. Also

[mm] \bruch{log(x)-p}{x*p}=0 [/mm]
[mm]\gdw log(x)-p=0 \gdw log(x)=p \gdw x=2^{p}[/mm]

Diesen gemeinsamen Punkt findest du, indem du zwei Scharen gleichsetzt, also z.B. [mm] f_{p}(x)=f_{q}(x), [/mm] und zeigst, dass entstehende Schnittpunkt frei von Parametern ist.

Viele Grüße
Daniel

Bezug
        
Bezug
Grenzwert Log-Problem: Ist denn...
Status: (Frage) beantwortet Status 
Datum: 21:35 Sa 11.03.2006
Autor: masaat234

Hallo,

1. Ist der Rest, den ich schrieb, mit dem Pol u. Log bei Null nicht definiert.. überhaupt Richtig ?

2. Nullstelle Ok x= [mm] 2^{p} [/mm] kann ich folgen aber was bedeutet das bzw. wie komm ich damit auf die nullstelle, gebe diese an ?
Versteh im Moment Bahnhof

3.Zwei Funktionsscharen gleichsetzen, was meinst du damit ?
ein Rechenbeispiel Bitte


Grüße
masaat

Bezug
                
Bezug
Grenzwert Log-Problem: Antwort
Status: (Antwort) fertig Status 
Datum: 22:31 Sa 11.03.2006
Autor: Walde

1. Da der Logarithmus nur für positive Zahlen definiert ist, ist deine Gesamte Funktion nur für positive Zahlen definiert. Du hast also bei x=0 nicht nur eine Definitionslücke, sondern sogar den linken Rand des Definitionsbereichs. (log 0 - p =-p ist übrigens falsch, denn log 0 gibt es gar nicht, da macht ein Gleichheitszeichen keinen Sinn.)
Um das Verhalten von [mm] f_{p}(x)=\bruch{log_{2}(x)-p}{p*x}, [/mm] x>0, [mm] p\not=0 [/mm] an den Grenzen des Definitionsbreichs zu Untersuchen, brauchst du formal den Satz von L'Hospital. Das Ergebnis ist
  [mm] \limes_{x\rightarrow\infty}f_{p}(x)=0 [/mm] ,da der log schwächer gegen Unendlich geht, als der Nenner

[mm] \limes_{x\rightarrow0}f_{p}(x)=-\infty [/mm]

2. [mm] x=2^p [/mm] ist deine Nullstelle. Es gilt [mm] f_{p}(2^p)=0 [/mm] für alle [mm] p\not=0. [/mm] Sie hängt halt vom Parameter p ab, aber die Angabe [mm] "x=2^p [/mm] ist Nullstelle von [mm] f_{p},p\not=0" [/mm] ist vollständig und ausreichend in einer Klausur.

3. gemeint ist genau das, was Daniel geschrieben hat, du setzt zwei verschiedene der Schaarfunktionen gleich:
[mm] f_{p}(x)=f_{q}(x), [/mm] mit [mm] p\not=q. [/mm]
Das bedeutet anschaulich, sie haben denselben y-Wert. Dann löst du nach x auf, und bekommst somit die Koordinaten des gemeinsamen Punktes. Dieser Punkt soll (laut Aufgabenstellung) für alle Schaarfunktionen gleich sein, in der Formel bedeutet das, dass x nicht mehr von einem Schaarparameter abhängt. Beispiel:
     [mm] f_{p}(x)=f_{q}(x) [/mm]
[mm] \gdw \bruch{log_{2}(x)-p}{p*x}=\bruch{log_{2}(x)-q}{q*x} [/mm] |*pqx (da x>0 (wegen Defenitionsbereich) und p,q [mm] \not=0 [/mm] gibt es hier keine Probleme
[mm] \gdw (log_{2}(x)-p)q=(log_{2}(x)-q)p [/mm]
[mm] \gdw p*log_{2}(x)-pq=q*log_{2}(x)-pq [/mm]   |+pq  - [mm] q*log_{2}(x) [/mm]
[mm] \gdw log_{2}(x) [/mm] (p-q)=0 | :(p-q) , da [mm] p\not=q [/mm] gibts hier keine Probleme
[mm] \gdw log_{2}(x)=0 [/mm]  
[mm] \gdw x=2^0=1 [/mm]

Der gemeinsame Schnittpunkt ist also [mm] (1|f_{p}(1) [/mm] ), also (1|-1), da [mm] f_{p}(1) =\bruch{log_{2}(1)-p}{p}=\bruch{0-1}{1} [/mm]

Alles Klar? ;)

L G walde






Bezug
                        
Bezug
Grenzwert Log-Problem: Danke ufff.
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:46 So 12.03.2006
Autor: masaat234

Danke ufff.


Grüße
masaat

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]