www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Grenzwert Funktionen/Stetigkei
Grenzwert Funktionen/Stetigkei < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwert Funktionen/Stetigkei: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:57 Do 28.10.2004
Autor: spacephreak

Hallo
Ich habe folgende Aufgabe
Aufgabe: Berechnen sie die folgenden Grenzwerte:
(i)  [mm] \limes_{x\rightarrow 0} \bruch{sin(x)}{cos(x)} [/mm]
(ii)  [mm] \limes_{x\rightarrow 1} \bruch{x³+x²-x-1}{x-1} [/mm]

Also bei der (ii) bekomme ich immer 0 raus, kann das sein?
Bei der (i) habe ich mir folgendes überlegt:
f(x) = [mm] \bruch{ \summe_{n=0}^{ \infty} (-1)^{n} \bruch{x^{2n+1}}{(2n+1)!}}{ \summe_{n=0}^{ \infty} (-1)^{n} \bruch{x^{2n}}{(2n)!}} [/mm]
= [mm] \summe_{n=0}^{ \infty} \bruch{x^{2n+1} * (2n)!}{(2n+1)! * x^{2n}} [/mm]
= [mm] \summe_{n=0}^{ \infty} \bruch{x^{2n+1}}{(2n+1) * x^{2n}} [/mm]
= [mm] \summe_{n=0}^{ \infty} \bruch{x}{(2n+1)} [/mm]

Doch was muss ich jetzt machen? Bin dann nach einem Bsp. gegangen:
Sei xm [mm] \subset \IR [/mm] eine Folge mit [mm] \limes_{m\rightarrow\infty} [/mm] 0+xm -> 0, betrachte
f(xm). Für x = xm eingesetzt und dann kommt bei mir 0 raus. Ist das so richtig?
Mfg

Markus

        
Bezug
Grenzwert Funktionen/Stetigkei: Antwort
Status: (Antwort) fertig Status 
Datum: 00:15 Fr 29.10.2004
Autor: andreas

hi Markus

vielleicht mache ich mir das bei der (i) auch zu einfach, aber [m] f(x) = \frac{\sin x}{\cos x} [/m] ist doch eine in [m] x = 0 [/m] stetige funktion (als quotient stetieger funktionen und nenner funktion ungleich null in $x=0$) und damit gilt ja [m] \lim_{x \to 0} f(x) = f(0) [/m], wobei [m] f(0) = 0 [/m]. bekanntermaßen gilt dann auch [m] f(x) = \tan x [/m] und diese überlegung stimmt ja dann mit dem ergbenis von oben überein. oder sollt ihr das mittels definition machen?

bei (ii) würde ich polynomdivision durch den faktor [m] (x-1) [/m] vorschlagen.

grüße
andreas

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]