www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Grenzwerte" - Grenzwert Funktionen
Grenzwert Funktionen < Folgen+Grenzwerte < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwert Funktionen: Beweis
Status: (Frage) beantwortet Status 
Datum: 10:52 Sa 02.12.2017
Autor: Takota

Aufgabe
[mm] \limes_{x\rightarrow\ x_0}f(x) [/mm] = a [mm] \not= [/mm] 0  [mm] \Rightarrow \limes_{x\rightarrow\ x_0}\bruch{1}{f(x)} [/mm] = [mm] \bruch{1}{a} [/mm]

Hallo.

Kann mir bitte jemand erklären, warum hier nur die Implikation gilt und nicht die Äquivalenz?

Gruß
Takota

        
Bezug
Grenzwert Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 11:06 Sa 02.12.2017
Autor: Diophant

Hallo,

> [mm]\limes_{x\rightarrow\ x_0}f(x)[/mm] = a [mm]\not=[/mm] 0 [mm]\Rightarrow \limes_{x\rightarrow\ x_0}\bruch{1}{f(x)}[/mm]
> = [mm]\bruch{1}{a}[/mm]
> Hallo.

>

> Kann mir bitte jemand erklären, warum hier nur die
> Implikation gilt und nicht die Äquivalenz?

Wie kommst du darauf? Nach den Grenzwertsätzen müsste das eine Äquivalenz sein, da du ja extra [mm] a\ne{0} [/mm] gefordert hast.

Hast du da irgendeine Quelle, aus der deine Vermutung stammt?


Gruß, Diophant

Bezug
                
Bezug
Grenzwert Funktionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:55 Sa 02.12.2017
Autor: Takota

Hallo Diophant,
danke für die Rückmeldung. Diese Behauptung steht in meinem Mathelehrbuch bei den Grenzwertsätzen für rellelle Funktionen, als Ergänzung zu diesen. Ich versuch mal den Beweis :-)

[mm] "\Leftarrow" [/mm]

[mm] \limes_{x\rightarrow\ x_0} \bruch{1}{f(x)} [/mm] =  [mm] \bruch{\limes_{x\rightarrow\ x_0} 1}{\limes_{x\rightarrow\ x_0} f(x)} [/mm] = [mm] \bruch{1}{\limes_{x\rightarrow\ x_0} f(x)} [/mm] = [mm] \bruch{1}{a} [/mm] mit [mm] a\not=0 [/mm]

[mm] "\Rightarrow" [/mm]

[mm] \limes_{x\rightarrow\ x_0} [/mm] f(x) = a  [mm] \gdw \bruch{1}{ \limes_{x\rightarrow\ x_0} f(x)} [/mm] =  [mm] \bruch{\limes_{x\rightarrow\ x_0} 1}{\limes_{x\rightarrow\ x_0} f(x)} [/mm] = [mm] \limes_{x\rightarrow\ x_0}\bruch{1}{f(x)} [/mm] = [mm] \bruch{1}{a} [/mm]

Ich hoffe das stimmt so? Somit ist die Aussage doch Äquivalent.

Wird wohl ein Druckfehler sein.

Gruß, Takota




Bezug
                        
Bezug
Grenzwert Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:07 Sa 02.12.2017
Autor: Diophant

Hallo,

> Hallo Diophant,
> danke für die Rückmeldung. Diese Behauptung steht in
> meinem Mathelehrbuch bei den Grenzwertsätzen für rellelle
> Funktionen, als Ergänzung zu diesen. Ich versuch mal den
> Beweis :-)

>

> [mm]"\Leftarrow"[/mm]

>

> [mm]\limes_{x\rightarrow\ x_0} \bruch{1}{f(x)}[/mm] =
> [mm]\bruch{\limes_{x\rightarrow\ x_0} 1}{\limes_{x\rightarrow\ x_0} f(x)}[/mm]
> = [mm]\bruch{1}{\limes_{x\rightarrow\ x_0} f(x)}[/mm] = [mm]\bruch{1}{a}[/mm]
> mit [mm]a\not=0[/mm]

>

> [mm]"\Rightarrow"[/mm]

>

> [mm]\limes_{x\rightarrow\ x_0}[/mm] f(x) = a [mm]\gdw \bruch{1}{ \limes_{x\rightarrow\ x_0} f(x)}[/mm]
> = [mm]\bruch{\limes_{x\rightarrow\ x_0} 1}{\limes_{x\rightarrow\ x_0} f(x)}[/mm]
> = [mm]\limes_{x\rightarrow\ x_0}\bruch{1}{f(x)}[/mm] = [mm]\bruch{1}{a}[/mm]

>

> Ich hoffe das stimmt so?


Nicht ganz. In der zweiten Zeile (der sog. 'Hinrichtung') nimmst du die Äquivalenz vorweg (die du ja erst beweisen möchtest). Also dort einfach einen Implikationspfeil antatt der Äquivalenz setzen und beide Richtungen stehen korrekt da.

> Somit ist die Aussage doch
> Äquivalent.

>

> Wird wohl ein Druckfehler sein.

Entweder das, oder man braucht im Zusammenhang mit einem anderen Beweis nur die eine Richtung.

Um welches Buch handelt es sich?


Gruß, Diophant

Bezug
        
Bezug
Grenzwert Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:31 So 03.12.2017
Autor: Gonozal_IX

Hiho,

> Kann mir bitte jemand erklären, warum hier nur die
> Implikation gilt und nicht die Äquivalenz?

ich möchte es anders formulieren: Man benötigt nur die Implikation um Äquivalenz sofort trivial zu erhalten!

Du hast also gegeben für [mm] $a\not= [/mm] 0$
$ [mm] \limes_{x\rightarrow\ x_0}f(x) [/mm]  = a   [mm] \Rightarrow \limes_{x\rightarrow\ x_0}\bruch{1}{f(x)} [/mm]  =  [mm] \bruch{1}{a} \quad(1)$ [/mm]

Und möchtest ebenso zeigen, dass auch gilt:

[mm] $\limes_{x\rightarrow\ x_0}\bruch{1}{f(x)} [/mm]  =  [mm] \bruch{1}{a} \Rightarrow \limes_{x\rightarrow\ x_0}f(x) [/mm]  = a $

Dann fangen wir mal an:
Sei also [mm] $\limes_{x\rightarrow\ x_0}\bruch{1}{f(x)} [/mm]  =  [mm] \bruch{1}{a}$ [/mm] und setzen wir [mm] $\overline{f} [/mm] = [mm] \frac{1}{f}$ [/mm] und [mm] $\overline{a} [/mm] = [mm] \frac{1}{a}$, [/mm] dann steht da oben nix anderes als
$ [mm] \limes_{x\rightarrow\ x_0}\overline{f}(x) [/mm]  = [mm] \overline{a}$ [/mm] und daraus folgt aus (1), dass dann eben gilt: [mm] $\limes_{x\rightarrow\ x_0}\bruch{1}{\overline{f}(x)} [/mm]  =  [mm] \bruch{1}{\overline{a}}$ [/mm]

Einsetzen von [mm] \overline{f} [/mm] und [mm] \overline{a} [/mm] liefert:

[mm] $\limes_{x\rightarrow\ x_0} [/mm] f(x)  =  a$

Also die Rückrichtung.

Gruß,
Gono


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]