www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Grenzwert -BernoulliL'Hospital
Grenzwert -BernoulliL'Hospital < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwert -BernoulliL'Hospital: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:47 Di 22.11.2005
Autor: Molch

Hallo!

Ich bemühe mich momentan folgende Aufgabe zu lösen:

[mm] \limes_{x\rightarrow 0} (\bruch{1-cos(x)}{x^{5}sin(x)}-\bruch{2}{x^4}) [/mm]

Es handelt sich ja hierbei um einen Grenzwert des Typs "  [mm] \infty [/mm] -  [mm] \infty [/mm] ".
Um ihn mit den Regeln von Bernoulli-L'Hospital berechnen zu können, muss man, wie ich annehme, den Hauptnenner bilden.

[mm] \limes_{x\rightarrow 0} (\bruch{(1-cos(x))x^{4}-2x^{5}sin(x)}{x^{9}sin(x)}) [/mm]

Wenn ich diesen Bruch differenziere vereinfacht sich der Therm nicht (ich nehme nicht an, dass 9maliges Differenzieren Sinn der Aufgabe sei). Eine Umformung nach

[mm] \limes_{x\rightarrow 0} (\bruch{\bruch{(1-cos(x))}{x^{5}}-\bruch{2sin(x)}{x^{4}}}{sin(x)}) [/mm]

führt zwar nach Differentiation im Nenner auf ein Ergebnis lässt im Zähler jedoch wieder einen "  [mm] \infty [/mm] -  [mm] \infty [/mm] " Ausdruck entstehen...

Ich nehme an mein Fehler liegt im Ansatz, leider habe ich ihn nicht ausmachen können, deshalb wäre ich für Ratschläge sehr dankbar.

Viele Grüße

        
Bezug
Grenzwert -BernoulliL'Hospital: Hauptnenner
Status: (Antwort) fertig Status 
Datum: 19:06 Di 22.11.2005
Autor: Loddar

Hallo Molch!


Der Hauptnenner beträgt doch lediglich [mm] $x^{\red{5}}*\sin(x)$ [/mm] .

Und dann bist Du bereits nach der zweiten Anwendung MBde l'Hospital fertig.


Gruß
Loddar


Bezug
                
Bezug
Grenzwert -BernoulliL'Hospital: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:57 Di 22.11.2005
Autor: Molch

Danke für deine Antwort!

Wenn ich nun jedoch 2x Zähler- und Nennertherme differenziere erhalte ich ebenfalls keinen bestimmten Ausdruck:

[mm] \limes_{n\rightarrow 0}\bruch{-3cos(x)-2xsin(x)}{20x^{3}+10x^{4}cos(x)-x^{5}sin(x)} [/mm]

Wenn x gegen 0 konvergiert, erhalte ich einen Ausdruck der Form " [mm] \bruch{-3}{0} [/mm] ". Der Therm ist ja so nicht definiert. Oder stehe ich einmal wieder auf dem Schlauch und er hat dies gar nicht zu sein, was bedeuten würde, dass ein uneigentlicher Grenzwert [mm] -\infty [/mm] vorliegt?

Gruß,
Molch

Bezug
                        
Bezug
Grenzwert -BernoulliL'Hospital: Ergebnisse richtig, aber ...
Status: (Antwort) fertig Status 
Datum: 20:08 Di 22.11.2005
Autor: Loddar

Hallo Molch!


> [mm]\limes_{n\rightarrow 0}\bruch{-3cos(x)-2xsin(x)}{20x^{3}+10x^{4}cos(x)-x^{5}sin(x)}[/mm]

Hmm, im Zähler erhalte ich etwas anderes ...


Aber der Schluss stimmt ...

> was bedeuten würde, dass ein uneigentlicher Grenzwert [mm]-\infty[/mm] vorliegt?

[ok] Genau! Das habe ich auch raus!


Gruß
Loddar


Bezug
                                
Bezug
Grenzwert -BernoulliL'Hospital: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:30 Di 22.11.2005
Autor: Molch

Alles klar!

Vielen Dank :)!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]