www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Grenzwert
Grenzwert < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwert: aufgabe
Status: (Frage) beantwortet Status 
Datum: 23:44 Do 04.07.2013
Autor: kais92

Aufgabe
Was ist der Grenzwert von lim n --> unendlich von [mm] \bruch{n!}{(2n)!} [/mm]
und wie berechnet man den Konvergenzradius von [mm] \summe_{k=1}^{n} k!x^k [/mm]

Leider fehlen mir die Formeln dafür und konnte dies nicht mit meiner Formelsammlung erledigen

        
Bezug
Grenzwert: Antwort
Status: (Antwort) fertig Status 
Datum: 00:01 Fr 05.07.2013
Autor: steppenhahn

Hallo,

> Was ist der Grenzwert von lim n --> unendlich von
> [mm]\bruch{n!}{(2n)!}[/mm]

Das Ergebnis ist 0.

Überlege dir dazu: $(2n)! = 2n* ... *(n+1)*n*...*1$
und $n! = n*...*1$.
Du kannst kürzen!

>  und wie berechnet man den Konvergenzradius von
> [mm]\summe_{k=1}^{n} k!x^k[/mm]

Das Ergebnis ist 0.

Nutze dazu []diese Seite und die zweite Formel unter "Bestimmung des Konvergenzradius".


Viele Grüße,
Stefan

Bezug
                
Bezug
Grenzwert: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:22 Fr 05.07.2013
Autor: kais92

Hallo,
weist du villeicht, woher ich die formeln für solche ausdrücke finde, wie $ (2n)! = [mm] 2n\cdot{} [/mm] ... [mm] \cdot{}(n+1)\cdot{}n\cdot{}...\cdot{}1 [/mm] $ .

Bezug
                        
Bezug
Grenzwert: Antwort
Status: (Antwort) fertig Status 
Datum: 00:31 Fr 05.07.2013
Autor: steppenhahn

Hallo,

> Hallo,
>  weist du villeicht, woher ich die formeln für solche
> ausdrücke finde, wie [mm](2n)! = 2n\cdot{} ... \cdot{}(n+1)\cdot{}n\cdot{}...\cdot{}1[/mm]
> .


Üblicherweise in deinem Vorlesungsskript.

[]Fakultät

Viele Grüße,
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]