www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Grenzwert
Grenzwert < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwert: Erklärung
Status: (Frage) beantwortet Status 
Datum: 19:16 Do 23.08.2012
Autor: derahnungslose

Aufgabe
Bestimmen Sie die folgenden Grenzwerte. Tragen Sie "divergent" ein, falls kein Grenzwert existiert.
[mm] \limes_{n\rightarrow\infty} \summe_{k=0}^{n} [/mm] 2/(4k-3)

Hallo Leute,

mit Folgen und Reihen kenn ich mich leider nicht so gut aus (ist schon bisschen her). Wie gehe ich das jetzt an? Habe das Quotienten-Kriterium angewendet und dafür leider 1 raus bekommen.
Hilft hier nicht das Minorantenkriterium? Ich suche also eine Reihe mit positiven Summanden die divergent ist und [mm] \ge [/mm] meiner Summanden ist? Die harmonische Reihe sieht meiner Reihe doch relativ ähnlich und sie ist div. für [mm] a\le1. [/mm] Kann ich damit was anfangen?

        
Bezug
Grenzwert: Antwort
Status: (Antwort) fertig Status 
Datum: 19:27 Do 23.08.2012
Autor: reverend

Hallo Ahnungsloser,

da hast Du die richtige Idee.

> Bestimmen Sie die folgenden Grenzwerte. Tragen Sie
> "divergent" ein, falls kein Grenzwert existiert.
>  [mm]\limes_{n\rightarrow\infty} \summe_{k=0}^{n}[/mm] 2/(4k-3)
>  Hallo Leute,
>  
> mit Folgen und Reihen kenn ich mich leider nicht so gut aus
> (ist schon bisschen her). Wie gehe ich das jetzt an? Habe
> das Quotienten-Kriterium angewendet und dafür leider 1
> raus bekommen.
> Hilft hier nicht das Minorantenkriterium? Ich suche also
> eine Reihe mit positiven Summanden die divergent ist und
> [mm]\ge[/mm] meiner Summanden ist? Die harmonische Reihe sieht
> meiner Reihe doch relativ ähnlich und sie ist div. für
> [mm]a\le1.[/mm] Kann ich damit was anfangen?

Klar. Du musst halt nur ein bisschen basteln. Man findest meist leicht eine Vergleichsvariante, wenn man erstmal lästige Summanden wegdenkt. Dann sieht Deine Reihe erstmal so aus, dass nur noch [mm] \tfrac{2}{4k}=\tfrac{1}{2k}=\tfrac{1}{2}*\tfrac{1}{k} [/mm] summiert wird. Das ist ja schon leicht zu entscheiden.
Nur: ist es dann auch wahr? Im Zweifelsfall kannst Du jetzt noch im Nenner wieder ein [mm] \pm{c} [/mm] hinzufügen, um die Folge soweit zu verschieben wie nötig.

Grüße
reverend


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]