www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Grenzwert
Grenzwert < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwert: Tipp
Status: (Frage) beantwortet Status 
Datum: 20:09 Mi 27.07.2011
Autor: RWBK

Aufgabe
Grenzwert berechnen,
[mm] \limes_{n\rightarrow\infty}\wurzel{(1+\bruch{3}{n})^{n}+n*sin(\bruch{1}{n})} [/mm]

Hallo,

die oben gezeigt Aufgabe soll hier eher als Beispiel dienen!
Hier mein Ansatz bzw.meine dazu gehörigen Fragen,

Zunächst habe ich folgenden Grenzwert beachtet.
[mm] \limes_{n\rightarrow\infty}n*sin(\bruch{1}{n}). [/mm] Die habe ich mithilfe einer Substitution gelöst und zwar [mm] k=\bruch{1}{n}\limes_{n\rightarrow0}\bruch{sin(k)}{k}=1 [/mm]
Hierzu meine ersten Fragen. Gibt es ein Anzeichen dafür das man die mit Substitution lösen sollte? Ändert sich der Grenzwert immer wenn man substituiert damit meine ich das aus [mm] \limes_{n\rightarrow\infty} [/mm] zu [mm] \limes_{n\rightarrow0} [/mm] wird? Ich versteh nicht warum aus [mm] \infty [/mm] plötzlich 0 wird. Kann mir das vllt jemand erklären.?

Dann habe ich folgendes betrachtet,
[mm] \limes_{n\rightarrow\infty}(1+\bruch{3}{n})^{n}= e^{3} [/mm]
. Dieses Teilergebnis müsste richtig sein da [mm] \limes_{n\rightarrow\infty}(1+\bruch{a}{n})^{n}=e^{a} [/mm] ein bekannter Grenztwert ist. ( So nennt das unser Lehrer immer) aber das erklärt sich mir ehrlich gesagt irgendwie nicht. Muss man solche Grenzwerte einfach wissen ?
Das komplett Ergebnis müsste [mm] \limes_{n\rightarrow\infty}\wurzel{(1+\bruch{3}{n})^{n}+n*sin(\bruch{1}{n})}= \wurzel{e^{3}+1} [/mm] lauten.

mfg

        
Bezug
Grenzwert: Antwort
Status: (Antwort) fertig Status 
Datum: 20:21 Mi 27.07.2011
Autor: schachuzipus

Hallo RWBK,


> Grenzwert berechnen,
>  
> [mm]\limes_{n\rightarrow\infty}\wurzel{(1+\bruch{3}{n})^{n}+n*sin(\bruch{1}{n})}[/mm]
>  Hallo,
>  
> die oben gezeigt Aufgabe soll hier eher als Beispiel
> dienen!
>  Hier mein Ansatz bzw.meine dazu gehörigen Fragen,
>  
> Zunächst habe ich folgenden Grenzwert beachtet.
>  [mm]\limes_{n\rightarrow\infty}n*sin(\bruch{1}{n}).[/mm] Die habe
> ich mithilfe einer Substitution gelöst und zwar
> [mm]k=\bruch{1}{n}\limes_{n\rightarrow0}\bruch{sin(k)}{k}=1[/mm]

Das ist eine gute Idee, aber schlecht zu lesen?

Formatfehler?

[mm] $\lim\limits_{n\to\infty}n\cdot{}\sin(1/n)=\lim\limits_{k\to 0}\frac{\sin(k)}{k}=1$ [/mm] sollte es wohl heißen ;-)

>  Hierzu meine ersten Fragen. Gibt es ein Anzeichen dafür
> das man die mit Substitution lösen sollte? Ändert sich
> der Grenzwert immer wenn man substituiert damit meine ich
> das aus [mm]\limes_{n\rightarrow\infty}[/mm] zu
> [mm]\limes_{n\rightarrow0}[/mm] wird?

Er wird zu [mm] $\lim\limits_{k\to 0}$ [/mm]

Auf die Idee mit der Substitution kommt man rechnt schnell, wenn man den (sehr bekannten) GW [mm] $\lim\limits_{x\to 0}\frac{\sin(x)}{x}=1$ [/mm] schon mal gesehen hat.

Hier hast du [mm] $n\to\infty$ [/mm] und substituierst [mm] $n=\frac{1}{k}$ [/mm] (also $k=1/n$)

Wenn [mm] $n\to\infty$ [/mm] geht also [mm] $k=\frac{1}{n}$ [/mm] gegen [mm] $\frac{1}{\infty}=0$ [/mm]

> Ich versteh nicht warum aus
> [mm]\infty[/mm] plötzlich 0 wird. Kann mir das vllt jemand
> erklären.?
>  
> Dann habe ich folgendes betrachtet,
>  [mm]\limes_{n\rightarrow\infty}(1+\bruch{3}{n})^{n}= e^{3}[/mm] [ok]
>  .
> Dieses Teilergebnis müsste richtig sein da
> [mm]\limes_{n\rightarrow\infty}(1+\bruch{a}{n})^{n}=e^{a}[/mm] ein
> bekannter Grenztwert ist. [ok]( So nennt das unser Lehrer
> immer) aber das erklärt sich mir ehrlich gesagt irgendwie
> nicht. Muss man solche Grenzwerte einfach wissen ?

Ja, das sollte man unbedingt wissen!

Das ist eine Möglichkeit, die Exponentialfunktion zu definieren als GW der oben genannten Folge:

Für alle [mm] $x\in\IR$ [/mm] bzw. [mm] $\in\IC$ [/mm] ist [mm] $e^x=\lim\limits_{n\to\infty}\left(1+x/n\right)^n$ [/mm]

>  Das komplett Ergebnis müsste
> [mm]\limes_{n\rightarrow\infty}\wurzel{(1+\bruch{3}{n})^{n}+n*sin(\bruch{1}{n})}= \wurzel{e^{3}+1}[/mm]  [ok]
> lauten.

Jo, sehr gut überlegt!

>  
> mfg

Gruß

schachuzipus


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]