www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Grenzwerte" - Grenzwert
Grenzwert < Folgen+Grenzwerte < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwert: so richtig?
Status: (Frage) beantwortet Status 
Datum: 18:09 Mi 17.02.2010
Autor: lalalove

hallo!

[mm] \limes_{n\rightarrow\infty} \bruch{3n+1}{n}*(-\bruch{1}{4})^{n} [/mm]

[mm] \limes_{n\rightarrow\infty} 3+\bruch{1}{n}*\limes_{n\rightarrow\infty}*(-\bruch{1}{4})^{n} [/mm] = 3+0*0 = 3

so richtig?

Für was steht dieses [mm] \limes_{n\rightarrow\infty} [/mm] nochmal?

Danke :)

        
Bezug
Grenzwert: Antwort
Status: (Antwort) fertig Status 
Datum: 18:32 Mi 17.02.2010
Autor: nooschi


> hallo!
>  
> [mm]\limes_{n\rightarrow\infty} \bruch{3n+1}{n}*(-\bruch{1}{4})^{n}[/mm]
>  
> [mm]\limes_{n\rightarrow\infty} 3+\bruch{1}{n}*\limes_{n\rightarrow\infty}*(-\bruch{1}{4})^{n}[/mm]
> = 3+0*0 = 3
>  
> so richtig?

nein.
[mm]\limes_{n\rightarrow\infty} 3+\bruch{1}{n}*\limes_{n\rightarrow\infty}*(-\bruch{1}{4})^{n} = 3+0*0 = 3[/mm]
das stimmt nicht, weil der erste lim-Ausdruck zusammengefasst betrachtet werden muss, das 3+0 müsste also in Klammern stehen.


richtige Lösung (glaube ich zumindest :-)):
[mm]\limes_{n\rightarrow\infty} \bruch{3n+1}{n}*(-\bruch{1}{4})^{n}=\limes_{n\rightarrow\infty} \bruch{-3n-1}{n*4^n}=\limes_{n\rightarrow\infty} (\bruch{-3}{4^n}+\bruch{-1}{n*4^n})=\limes_{n\rightarrow\infty} \bruch{-3}{4^n}+\limes_{n\rightarrow\infty}\bruch{-1}{n*4^n}=0+0=0[/mm]

oder so wie du das gerechnet hast mit einer kleiner Änderung:
[mm]\limes_{n\rightarrow\infty} (3+\bruch{1}{n})*\limes_{n\rightarrow\infty}*(-\bruch{1}{4})^{n} = (3+0)*0 = 0[/mm]
  

> Für was steht dieses [mm]\limes_{n\rightarrow\infty}[/mm] nochmal?

Für den Limes, also den Grenzwert, wenn das n beliebig gross ist.

> Danke :)


Bezug
                
Bezug
Grenzwert: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:04 Mi 17.02.2010
Autor: lalalove


> > hallo!
>  >  
> > [mm]\limes_{n\rightarrow\infty} \bruch{3n+1}{n}*(-\bruch{1}{4})^{n}[/mm]
>  
> >  

> > [mm]\limes_{n\rightarrow\infty} 3+\bruch{1}{n}*\limes_{n\rightarrow\infty}*(-\bruch{1}{4})^{n}[/mm]
> > = 3+0*0 = 3
>  >  
> > so richtig?
>  
> nein.
>  [mm]\limes_{n\rightarrow\infty} 3+\bruch{1}{n}*\limes_{n\rightarrow\infty}*(-\bruch{1}{4})^{n} = 3+0*0 = 3[/mm]
>  
> das stimmt nicht, weil der erste lim-Ausdruck
> zusammengefasst betrachtet werden muss, das 3+0 müsste
> also in Klammern stehen.
>  
>
> richtige Lösung (glaube ich zumindest :-)):
>  [mm]\limes_{n\rightarrow\infty} \bruch{3n+1}{n}*(-\bruch{1}{4})^{n}=\limes_{n\rightarrow\infty} \bruch{-3n-1}{n*4^n}=\limes_{n\rightarrow\infty} (\bruch{-3}{4^n}+\bruch{-1}{n*4^n})=\limes_{n\rightarrow\infty} \bruch{-3}{4^n}+\limes_{n\rightarrow\infty}\bruch{-1}{n*4^n}=0+0=0[/mm]
>  
> oder so wie du das gerechnet hast mit einer kleiner
> Änderung:
>  [mm]\limes_{n\rightarrow\infty} (3+\bruch{1}{n})*\limes_{n\rightarrow\infty}*(-\bruch{1}{4})^{n} = (3+0)*0 = 0[/mm]
>  
>  
>
> > Für was steht dieses [mm]\limes_{n\rightarrow\infty}[/mm] nochmal?
>  
> Für den Limes, also den Grenzwert, wenn das n beliebig
> gross ist.
>  

Danke :)

und warum ist das [mm] (-\bruch{1}{4})^{n} [/mm] nochmal = 0 ?
weil wenn man für das n eine 0 einsetzt das alles gleich 0 wird?


Bezug
                        
Bezug
Grenzwert: Antwort
Status: (Antwort) fertig Status 
Datum: 19:09 Mi 17.02.2010
Autor: abakus


> > > hallo!
>  >  >  
> > > [mm]\limes_{n\rightarrow\infty} \bruch{3n+1}{n}*(-\bruch{1}{4})^{n}[/mm]
>  
> >  

> > >  

> > > [mm]\limes_{n\rightarrow\infty} 3+\bruch{1}{n}*\limes_{n\rightarrow\infty}*(-\bruch{1}{4})^{n}[/mm]
> > > = 3+0*0 = 3
>  >  >  
> > > so richtig?
>  >  
> > nein.
>  >  [mm]\limes_{n\rightarrow\infty} 3+\bruch{1}{n}*\limes_{n\rightarrow\infty}*(-\bruch{1}{4})^{n} = 3+0*0 = 3[/mm]
>  
> >  

> > das stimmt nicht, weil der erste lim-Ausdruck
> > zusammengefasst betrachtet werden muss, das 3+0 müsste
> > also in Klammern stehen.
>  >  
> >
> > richtige Lösung (glaube ich zumindest :-)):
>  >  [mm]\limes_{n\rightarrow\infty} \bruch{3n+1}{n}*(-\bruch{1}{4})^{n}=\limes_{n\rightarrow\infty} \bruch{-3n-1}{n*4^n}=\limes_{n\rightarrow\infty} (\bruch{-3}{4^n}+\bruch{-1}{n*4^n})=\limes_{n\rightarrow\infty} \bruch{-3}{4^n}+\limes_{n\rightarrow\infty}\bruch{-1}{n*4^n}=0+0=0[/mm]
>  
> >  

> > oder so wie du das gerechnet hast mit einer kleiner
> > Änderung:
>  >  [mm]\limes_{n\rightarrow\infty} (3+\bruch{1}{n})*\limes_{n\rightarrow\infty}*(-\bruch{1}{4})^{n} = (3+0)*0 = 0[/mm]
>  
> >  

> >  

> >
> > > Für was steht dieses [mm]\limes_{n\rightarrow\infty}[/mm] nochmal?
>  >  
> > Für den Limes, also den Grenzwert, wenn das n beliebig
> > gross ist.
>  >  
> Danke :)
>
> und warum ist das [mm](-\bruch{1}{4})^{n}[/mm] nochmal = 0 ?
>  weil wenn man für das n eine 0 einsetzt das alles gleich
> 0 wird?
>  

Hallo,
n wird nicht 0. Es soll n immer, immer, immer größer werden (also gegen unendlich gehen).

Rechne doch selbst der Reihe nach aus:
n=2 --> [mm] (-1/4)^2=... [/mm]
n=3 --> [mm] (-1/4)^3=... [/mm]
n=4 --> [mm] (-1/4)^4=... [/mm]
n=5 --> [mm] (-1/4)^5=... [/mm]

Gruß Abakus


Bezug
                                
Bezug
Grenzwert: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:14 Mi 17.02.2010
Autor: lalalove


>  >  
> Hallo,
>  n wird nicht 0. Es soll n immer, immer, immer größer
> werden (also gegen unendlich gehen).
>  
> Rechne doch selbst der Reihe nach aus:
>  n=2 --> [mm](-1/4)^2=...[/mm]

>  n=3 --> [mm](-1/4)^3=...[/mm]

>  n=4 --> [mm](-1/4)^4=...[/mm]

>  n=5 --> [mm](-1/4)^5=...[/mm]

>  

und warum wird dann immer aus [mm] \limes_{n\rightarrow\infty} [/mm] [ein Bruch mit n] = 0?

Bezug
                                        
Bezug
Grenzwert: Antwort
Status: (Antwort) fertig Status 
Datum: 19:39 Mi 17.02.2010
Autor: leduart

Hallo
Wenn du in [mm] \bruch{1}{n} [/mm] oder [mm] \bruch{1}{n^2+n} [/mm] odr ähnliches immer grössere Zahlen einsetzt, also z.bsP 10, 100, 10000000, 10000000000000000 usw. wie gross wird dann der Bruch?
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]