www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Grenzwerte" - Grenzwert
Grenzwert < Folgen+Grenzwerte < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwert: Definition
Status: (Frage) beantwortet Status 
Datum: 16:01 So 06.09.2009
Autor: Biene92

Hallo,
Ich habe ein Problem.
Ich soll einen Vortrag über Grenzwerte halten und dabei erklären was ein Grenzwert ist, aber ich versteh es nicht, ich habe auch schon im Internet nach einer Definition gesucht aber die versteh ich alle nicht.
Also kann mir bitte jemand erklären was ein Grenzwert ist?

Schon einmal danke im Voraus
Liebe Grüße
Biene92

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Grenzwert: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:53 So 06.09.2009
Autor: cycore

hallo biene,
vielleicht stellst du die definitionen/eine definition die du im internet gefunden hast hier mal vor (auch wenn du sie nur zitierst) und versuchst ein bisschen genauer zu beschreiben was du nicht verstehst?!?
das nutzt mehr als wenn hier jemand eine definition wiedergibt ohne zu wissen wo der knackpunkt ist

Bezug
                
Bezug
Grenzwert: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:05 So 06.09.2009
Autor: Biene92

Ich verstehe generell nicht was ein Grenzwert überhaupt ist und wozu er da ist.

Bezug
                        
Bezug
Grenzwert: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:03 So 06.09.2009
Autor: Tauti

Hallo,

nach deinen Angaben hast du überhaupt keine Ahnung was ein Granzwert ist. Deswegen werde ich jetzt nicht die Definition angeben. Alles was ich will ist es, dir eine Vorstellung vom Begriff des Grenzwertes zu geben.

Wir betrachten mal beispielhaft die Zahlenfolge

  [mm] $a_n [/mm] = [mm] \frac{1}{n}$, [/mm]    $n [mm] \in [/mm] N$.

Die ersten folgeglieder lauten also

  [mm] $a_1 [/mm] = 1$   [mm] $a_2 [/mm] = [mm] \frac{1}{2}$ $a_3=\frac{1}{3}$ [/mm]    usw...

Wie wir beobachten, nähern sich die Folgeglieder immer näher an die Null an. Das Folgeglied [mm] $a_{1000} [/mm] = 1/1000$ ist schon sehr nah an der Null. Und alle weiter folgenden Glieder werden noch näher an der Null sein.

Man spricht davon, daß die Zahlenfolge [mm] $(a_n)_n$ [/mm] gegen die Zahl Null konvergiert, in Zeichen: [mm] $a_n \to [/mm] 0$ für $n [mm] \to \infty$. [/mm] Ein weiteres Beispiel ist die Zahlenfolge

  [mm] $b_n [/mm] = [mm] 10-\frac{1}{n}$. [/mm]

Diese Zahlenfolge konvergiert gegen 10. Diesen Effekt kann man mathematisch exakt definieren. Aber darüber sprechen wir vielleicht wenn du ein bisschen Gefühl für die Sache entwickelt hast.

Es gibt auch Zahlenfolgen die nicht konvergieren. Dazu betrachten wir

  [mm] $c_n [/mm] = [mm] (-1)^n$. [/mm]

Die Folge besteht also aus abwechselnd auftretenden minus Einsen und plus Einsen. Diese Zahlenfolge konvergiert gegen nicht, da es keine Zahl gibt, der sich die Folge immer mehr annähert.

Gruß
Tauti

Bezug
        
Bezug
Grenzwert: Antwort
Status: (Antwort) fertig Status 
Datum: 18:16 So 06.09.2009
Autor: Al-Chwarizmi


> Hallo,
>  Ich habe ein Problem.
>  Ich soll einen Vortrag über Grenzwerte halten und dabei
> erklären was ein Grenzwert ist, aber ich versteh es nicht,
> ich habe auch schon im Internet nach einer Definition
> gesucht aber die versteh ich alle nicht.
>  Also kann mir bitte jemand erklären was ein Grenzwert
> ist?
>  
> Schon einmal danke im Voraus
>  Liebe Grüße
>  Biene92


Hallo Biene,

man darf aber doch wohl annehmen, dass der Begriff
wenigstens ein Stück weit schon behandelt worden
ist - oder wird von dir erwartet, dass du die Klasse
auf ein Thema einstimmen sollst, das erst nachher
drankommen soll ?

Gut wäre noch zu wissen, ob es um Grenzwerte
bei Zahlenfolgen oder bei beliebigen Funktionen
gehen soll.

Nur einmal der einfachste Fall einer Zahlenfolge,
die aus unendlich vielen Gliedern [mm] a_1, a_2, a_3, a_4,\,..... [/mm]
besteht. Nehmen wir ein konkretes Beispiel:

     [mm] a_n=\frac{3\,n-8}{5\,n+1} [/mm]

Setzt man in die Formel die Werte n=1 bis n=7 ein, so
erhält man den Anfang der Zahlenfolge:

   $\ [mm] -\,\frac{5}{6}\ [/mm] ,\ [mm] -\,\frac{2}{11}\ [/mm] ,\ [mm] \frac{1}{16}\ [/mm] ,\ [mm] \frac{4}{21}\ [/mm] ,\ [mm] \frac{7}{26}\ [/mm] ,\ [mm] \frac{10}{31}\ [/mm] ,\ [mm] \frac{13}{36}\ [/mm] ,\ [mm] \,......$ [/mm]

Das sieht ziemlich chaotisch und unübersichtlich aus.
Setzen wir aber einmal für n recht grosse Zahlenwerte
ein und schreiben die Glieder dezimal, so sieht man:

    $\ [mm] a_{10}\ \approx\ [/mm] 0.431373$

    $\ [mm] a_{100}\ \approx\ [/mm] 0.582834$

    $\ [mm] a_{1000}\ \approx\ [/mm] 0.598280$

    $\ [mm] a_{10000}\ \approx\ [/mm] 0.599828$

    $\ [mm] a_{100000}\ \approx\ [/mm] 0.599983$

    $\ [mm] a_{100000}\ \approx\ [/mm] 0.599998$

Mit noch deutlich grösseren n-Werten liefert der
Rechner schließlich einfach den Wert 0.6, obwohl
dies eigentlich gar nicht exakt stimmen kann.
Da der Rechner nur etwa ein Dutzend Dezimalen
berücksichtigen kann, müssen Werte, die sehr
nahe bei 0.6 liegen, schließlich auf
0.6 = 0.6000000...  gerundet werden.

Diese Zahlenfolge hat offenbar die Eigenschaft,
dass ihre Glieder mit sehr grossen Nummern n
sehr nahe bei 0.6 liegen. Tatsächlich kommen die
Glieder der Folge der Zahl 0.6 beliebig nahe, wenn
man nur die Nummer n genügend gross wählt.
Die Zahl 0.6 spielt also für diese Zahlenfolge eine
wichtige Rolle. Man nennt die Zahl 0.6 "Grenzwert"
der Folge und schreibt dafür:

      [mm] $\limes_{n\to\infty}a_n\ [/mm] =\ 0.6$

Grenzwerte dieser und anderer Arten spielen in
vielen Bereichen der Mathematik eine wichtige
Rolle. Nur ein kleines Beispiel: alle irrationalen
Zahlen kann man eigentlich nur durch Grenz-
werte erfassen. Das fängt schon bei Quadratwurzeln
wie [mm] \sqrt{2} [/mm] oder [mm] \sqrt{5} [/mm] an, über trigonome-
trische Zahlenwerte wie sin(20°), cos(1°), tan(76°)
zu Exponentialfunktions- und Logarithmuswerten
wie die eulersche Zahl [mm] e=e^1 [/mm] , [mm] e^{-3}, [/mm] ln(2), log(31) etc.

Ich hoffe nur, dass du den Vortrag nicht schon in
den allernächsten Tagen halten musst ...


LG    Al-Chw.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]