www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionen" - Grenzwert
Grenzwert < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwert: Winkelfunktion bei Grenzwert
Status: (Frage) beantwortet Status 
Datum: 23:22 So 28.12.2008
Autor: Martin1988

Aufgabe
Bestimmen Sie die ganze Zahl a , für die gilt: [mm] a=100*\limes_{x\rightarrow\\0}(\bruch{1-cos(\bruch{x}{2})}{1-cos(x)}) [/mm]



So, ich habe da mehrfach rumgerechnet und immer als Lösung a=0 rausbekommen. - Das ist aber laut Lösungsbuch nicht richtig .... Kann mir jemand beim Lösen der Aufgabe helfen?

Vielen Dank im Voraus!! =)

        
Bezug
Grenzwert: Antwort
Status: (Antwort) fertig Status 
Datum: 23:31 So 28.12.2008
Autor: schachuzipus

Hallo Martin,

> Bestimmen Sie die ganze Zahl a , für die gilt:
> [mm]a=100*\limes_{x\rightarrow\\0}(\bruch{1-cos(\bruch{x}{2})}{1-cos(x)})[/mm]
>  
>
> So, ich habe da mehrfach rumgerechnet und immer als Lösung
> a=0 rausbekommen. - Das ist aber laut Lösungsbuch nicht
> richtig .... Kann mir jemand beim Lösen der Aufgabe
> helfen?


Das Hauptproblem ist ja, diesen Limes zu berechnen.

Da bei direktem Grenzübergang [mm] $x\to [/mm] 0$ der unbestimmte Ausdruck [mm] $\frac{0}{0}$ [/mm] herauskommt, bietet sich die Regel von de l'Hôpital an.

So wie ich das auf die Schnelle sehe, musst du selbige Regel zweimal anwenden ...

>  
> Vielen Dank im Voraus!! =)

LG

schachuzipus

Bezug
                
Bezug
Grenzwert: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:33 So 28.12.2008
Autor: Martin1988

Also ich war mir nicht sicher, ob ich einfach den Zähler und Nenner getrennt betrachten kann ..... Falls ja ergäbe sich mit

[mm] \limes_{x\rightarrow\\0}\bruch{f(x)}{g(x)}=\limes_{x\rightarrow\\0}\bruch{f'(x)}{g'(x)}=\limes_{x\rightarrow\\0}\bruch{f''(x)}{g''(x)} [/mm]


[mm] \limes_{x\rightarrow\\0}(\bruch{1-cos(\bruch{x}{2})}{1-cos(x)})=\limes_{x\rightarrow\\0}(\bruch{sin(\bruch{x}{2})}{2*sin(x)})=\limes_{x\rightarrow\\0}(\bruch{cos(\bruch{x}{2})}{4*cos(x)}) [/mm]

Ist das soweit richtig?
Falls ja, ergäbe sich im weiteren:

[mm] a=100*\limes_{x\rightarrow\\0}(\bruch{cos(\bruch{0}{2})}{4*cos(0)})=100*((\bruch{1}{4*1})=25 [/mm]

Ist das so richtig, oder habe ich da irgendwo einen Fehler?


Bezug
                        
Bezug
Grenzwert: Antwort
Status: (Antwort) fertig Status 
Datum: 23:35 So 28.12.2008
Autor: schachuzipus

Hallo nochmal,

> Also ich war mir nicht sicher, ob ich einfach den Zähler
> und Nenner getrennt betrachten kann ..... Falls ja ergäbe
> sich mit
>  
> [mm]\limes_{n\rightarrow\\0}\bruch{f(x)}{g(x)}=\limes_{n\rightarrow\\0}\bruch{f'(x)}{g'(x)}=\limes_{n\rightarrow\\0}\bruch{f''(x)}{g''(x)}[/mm]
>  
>
> [mm]\limes_{n\rightarrow\\0}(\bruch{1-cos(\bruch{x}{2})}{1-cos(x)})=\limes_{n\rightarrow\\0}(\bruch{sin(\bruch{x}{2})}{2*sin(x)})=\limes_{n\rightarrow\\0}(\bruch{cos(\bruch{x}{2})}{4*cos(x)})[/mm]
>  
> Ist das soweit richtig?
>  Falls ja, ergäbe sich im weiteren:
>  
> [mm]a=100*\limes_{n\rightarrow\\0}(\bruch{cos(\bruch{0}{2})}{4*cos(0)})=100*((\bruch{1}{4*1})=25[/mm]
>  
> Ist das so richtig, oder habe ich da irgendwo einen
> Fehler?

Nein, das sieht sehr gut aus!

Wenn du nur noch überall statt [mm] $n\to [/mm] 0$ [mm] $x\to [/mm] 0$ schreibst ...

LG

schachuzipus



Bezug
                                
Bezug
Grenzwert: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:37 So 28.12.2008
Autor: Martin1988

:-D Stimmt! Änder ich gleich mal noch um!

Vielen Dank!!! =)

Bezug
        
Bezug
Grenzwert: Alternative
Status: (Antwort) fertig Status 
Datum: 23:37 So 28.12.2008
Autor: Loddar

Hallo Martin!


Man kann hier auch alternativ ein []Additionstheorem anwenden und etwas abwandeln.
Es gilt:
[mm] $$\cos(2*x) [/mm] \ = \ [mm] 2*\cos^2(x)-1$$ [/mm]

Daraus wird auch:
[mm] $$\cos(x) [/mm] \ = \ [mm] 2*\cos^2\left(\bruch{x}{2}\right)-1$$ [/mm]
Setze dies im Nenner ein und fasse zusammen.

Anschließend kann man nach Anwendung der 3. binomische Formel kürzen.


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]