www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Grenzw. einer Folge eindeutig
Grenzw. einer Folge eindeutig < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzw. einer Folge eindeutig: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:13 Mi 20.08.2014
Autor: drossel

Hallo
ich habe eine kurze Frage bezüglich des Beweises, dass der Grenzwert einer Folge in K= [mm] \mathbb{R} [/mm] oder [mm] \mathbb{C} [/mm] eindeutig ist.
In Ana1, wenn man Folgen in [mm] \mathbb{R} [/mm] oder [mm] \mathbb{C} [/mm] kennenlernt und betrachtet, dann wird der Beweis, dass Grenzwerte da eindeutig sind,  oftmals(?) über ein Widerspruchsbeweis geführt, wie etwa hier http://www.inf.fu-berlin.de/lehre/SS09/mafi2/teil3.pdf auf S.2.
Ich habe den Beweis auch so in meinem Ana1skript stehen. Gibt es einen Grund, dass so zu beweisen? Ist das nicht etwas umständlicher als nötig?
Oder ist da irgendwas falsch dran, den kurzen direkten Beweis mit der Dreieicksungleichung zu machen? Ich wüsste nicht, weshalb das falsch sein sollte, aber frage lieber mal nach.
Das wäre dann grob der Beweis: [mm] (a_n) [/mm] Folge in K mit [mm] a_n\to [/mm] a und [mm] a_n\to [/mm] b für [mm] n\to \infty [/mm]
dann ist [mm] |a-b|\le |a-a_n|+|a_n-b|\to [/mm] 0 für [mm] n\to \infty [/mm]  und daraus folgt: a=b.
Ich bin etwas verunsichert. Gruß

        
Bezug
Grenzw. einer Folge eindeutig: Antwort
Status: (Antwort) fertig Status 
Datum: 11:25 Mi 20.08.2014
Autor: Diophant

Hallo,

> Hallo
> ich habe eine kurze Frage bezüglich des Beweises, dass
> der Grenzwert einer Folge in K= [mm]\mathbb{R}[/mm] oder [mm]\mathbb{C}[/mm]
> eindeutig ist.
> In Ana1, wenn man Folgen in [mm]\mathbb{R}[/mm] oder [mm]\mathbb{C}[/mm]
> kennenlernt und betrachtet, dann wird der Beweis, dass
> Grenzwerte da eindeutig sind, oftmals(?) über ein
> Widerspruchsbeweis geführt, wie etwa hier
> http://www.inf.fu-berlin.de/lehre/SS09/mafi2/teil3.pdf auf
> S.2.
> Ich habe den Beweis auch so in meinem Ana1skript stehen.
> Gibt es einen Grund, dass so zu beweisen? Ist das nicht
> etwas umständlicher als nötig?
> Oder ist da irgendwas falsch dran, den kurzen direkten
> Beweis mit der Dreieicksungleichung zu machen? Ich wüsste
> nicht, weshalb das falsch sein sollte, aber frage lieber
> mal nach.
> Das wäre dann grob der Beweis: [mm](a_n)[/mm] Folge in K mit [mm]a_n\to[/mm]
> a und [mm]a_n\to[/mm] b für [mm]n\to \infty[/mm]
> dann ist [mm]|a-b|\le |a-a_n|+|a_n-b|\to[/mm]
> 0 für [mm]n\to \infty[/mm] und daraus folgt: a=b.
> Ich bin etwas verunsichert. Gruß

Hm, dazu gibt es keinen Anlss (zum Verunsichertsein). Ich würde sagen, das ist Gesachmacksache. Die Dreiecksungleichung darf man ja an dieser Stelle wohl als bekannt voraussetzen, so dass nichts gegen deinen direkten Beweis spricht. Nur ganz ehrlich: für meinen Geschmack ist der keinesfalls naheliegend sondern eben der Beweis durch Widerspruch ist der naheliegendste.


Gruß, Diophant

Bezug
                
Bezug
Grenzw. einer Folge eindeutig: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:31 Mi 20.08.2014
Autor: MaslanyFanclub

Hallo,

als Anmerkung:
Ich sehe nicht wirklich, das hier ein Widerspruchsbeweis vermieden wird eher verschleiert.
Denn was bedeutet [mm] $|a-a_n|+|a_n-b| \to [/mm] 0$ eigentlich genau.
Es läuft doch i.W. darauf hinaus, dass $|a-b|< [mm] \epsilon \quad \forall \epsilon [/mm] > 0$ und da ist wieder der Widerspruchsbeweis aus dem Skript.

Bezug
                        
Bezug
Grenzw. einer Folge eindeutig: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:37 Mi 20.08.2014
Autor: Diophant

Hallo MaslanyFanClub,

> als Anmerkung:
> Ich sehe nicht wirklich, das hier ein Widerspruchsbeweis
> vermieden wird eher verschleiert.
> Denn was bedeutet [mm]|a-a_n|+|a_n-b| \to 0[/mm] eigentlich genau.
> Es läuft doch i.W. darauf hinaus, dass [mm]|a-b|< \epsilon \quad \forall \epsilon \in \mathbb R[/mm]
> und da ist wieder der Widerspruchsbeweis aus dem Skript.

Ja, da hast du natürlich auch wieder Recht, so weit habe ich gar nicht gedacht. Falsch wird der Beweis ja dadurch nicht, aber eben auch nicht irgendwie intuitiver.

Gruß, Diophant 

Bezug
                                
Bezug
Grenzw. einer Folge eindeutig: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:41 Mi 20.08.2014
Autor: MaslanyFanclub


> Hallo MaslanyFanClub,
>  
> > als Anmerkung:
>  > Ich sehe nicht wirklich, das hier ein

> Widerspruchsbeweis
>  > vermieden wird eher verschleiert.

>  > Denn was bedeutet [mm]|a-a_n|+|a_n-b| \to 0[/mm] eigentlich

> genau.
>  > Es läuft doch i.W. darauf hinaus, dass [mm]|a-b|< \epsilon \quad \forall \epsilon \in \mathbb R[/mm]

>  
> > und da ist wieder der Widerspruchsbeweis aus dem Skript.
>  
> Ja, da hast du natürlich auch wieder Recht, so weit habe
> ich gar nicht gedacht. Falsch wird der Beweis ja dadurch
> nicht, aber eben auch nicht irgendwie intuitiver.
>  
> Gruß, Diophant 

Mit dem hab ich allerdings vollkommen Unrecht, hab den blödsinnigen Fehler  grad  ausgebessert [mm] $\epsilon [/mm] >0$ natürlich, sonst bin ich im Land der schlechten Mathewitze.


Bezug
                                        
Bezug
Grenzw. einer Folge eindeutig: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:08 Mi 20.08.2014
Autor: drossel

danke für eure Antworten.
In dem Widerpruchsbeweis im Skript steckt das ja mit der Dreiecksungleichung schon drin.
Folgt in der direkten Variante aus |a-b|  [mm] \le |a-a_n|+|a_n-b|\to [/mm] 0 nicht, dass [mm] |a-b|\le [/mm] 0 und daraus a=b  (weil der Betrag einer Zahl nicht negativ ist)?
Das im Skript ist aber auch nicht schwer zu verstehen für mich. Finde auch, dass das so klarer wird wie es da steht.
Lg

Bezug
                                                
Bezug
Grenzw. einer Folge eindeutig: Antwort
Status: (Antwort) fertig Status 
Datum: 12:20 Mi 20.08.2014
Autor: MaslanyFanclub


> danke für eure Antworten.
>  In dem Widerpruchsbeweis im Skript steckt das ja mit der
> Dreiecksungleichung schon drin.
> Folgt in der direkten Variante aus |a-b|  [mm]\le |a-a_n|+|a_n-b|\to[/mm]
> 0 nicht, dass [mm]|a-b|\le[/mm] 0 und daraus a=b  (weil der Betrag
> einer Zahl nicht negativ ist)?

Blöde Frage: Woher weißt du denn das der Grenzwert [mm] $\lim_{n \to \infty} |a-a_n|=0$ [/mm] eindeutig ist ?
Ich finde diesen Beweis sehr schwammig, denn du arbeitest mit der Theorie, die du eigentlich erst beweisen willst.

>  Das im Skript ist aber auch nicht schwer zu verstehen für
> mich. Finde auch, dass das so klarer wird wie es da steht.
>  Lg


Bezug
        
Bezug
Grenzw. einer Folge eindeutig: Antwort
Status: (Antwort) fertig Status 
Datum: 13:23 Mi 20.08.2014
Autor: fred97

Ich habe mal in obigem Skript nachgesehen und festgestellt, dass der Satz über die Eindeutigkeit des Grenzwertes einer konvergenten Folge unmittelbar nach der Def. der Konvergenz kommt.

Für Deinen "Beweis" brauchst Du, dass die Summe zweier konvergenter Folgen wieder konvergiert und zwar gegen die Summe der Grenzwerte.
Weiter brauchst Du noch die Monotonie des Grenzwertes. Für all diese Eigenschaften braucht man aber schon die Eindeutigkeit des Grenzwertes  !!!

FRED

Bezug
        
Bezug
Grenzw. einer Folge eindeutig: Antwort
Status: (Antwort) fertig Status 
Datum: 15:55 Mi 20.08.2014
Autor: Marcel

Hallo Drossel,

> Hallo
>  ich habe eine kurze Frage bezüglich des Beweises, dass
> der Grenzwert einer Folge in K= [mm]\mathbb{R}[/mm] oder [mm]\mathbb{C}[/mm]
> eindeutig ist.
>  In Ana1, wenn man Folgen in [mm]\mathbb{R}[/mm] oder [mm]\mathbb{C}[/mm]
> kennenlernt und betrachtet, dann wird der Beweis, dass
> Grenzwerte da eindeutig sind,  oftmals(?) über ein
> Widerspruchsbeweis geführt, wie etwa hier
> http://www.inf.fu-berlin.de/lehre/SS09/mafi2/teil3.pdf auf
> S.2.
> Ich habe den Beweis auch so in meinem Ana1skript stehen.
> Gibt es einen Grund, dass so zu beweisen? Ist das nicht
> etwas umständlicher als nötig?

was bedeutet "umständlicher als nötig"? Ich selbst würde diesen Satz ein
wenig anders beweisen, was im Endeffekt zwar genau das Gleiche ist, wie
das, was dort gemacht wird, aber meiner Ansicht nach den Beweis ein
wenig übersichtlicher macht:

1. Wir zeigen: Wenn für $a [mm] \in \IR$ [/mm]

    $|a| < [mm] \epsilon$ [/mm] für alle [mm] $\epsilon [/mm] > 0$

gilt, dann folgt [mm] $a=0\,.$ [/mm]

Beweis: Ist [mm] $a=0\,,$ [/mm] so ist nichts zu zeigen. Für $a [mm] \not=0$ [/mm] setze [mm] $\epsilon:=|a|\,,$ [/mm] und man
sieht den Widerspruch.

2. Sei nun [mm] $a_n \to [/mm] a$ und [mm] $a_n \to b\,.$ [/mm] Für [mm] $\epsilon [/mm] > 0$ sei [mm] $\epsilon':=\epsilon/2\,,$ [/mm] dann existieren [mm] $N_1'$ [/mm] und $N'_2$
mit [mm] $|a_n-a| [/mm] < [mm] \epsilon'$ [/mm] für alle $n [mm] \ge N_1'$ [/mm] und [mm] $|a_n-b| [/mm] < [mm] \epsilon'$ [/mm] für alle $n [mm] \ge N_2'.$ [/mm]

Für alle $n [mm] \ge N:=\max\{N_1',\,N_2'\}$ [/mm] folgt

    $|a-b| [mm] \le |a-a_n|+|a_n-b| [/mm] < [mm] 2*\epsilon'=\epsilon.$ [/mm]

3. Insbesondere folgt für jedes [mm] $\epsilon [/mm] > 0$ mit dem [mm] $N\,$ [/mm] aus 2.:

    $|a-b| < [mm] |a-a_N|+|a_N-b|=\epsilon\,,$ [/mm]

also

    $|a-b| < [mm] \epsilon\,.$ [/mm]

Nach 1. folgt [mm] $a-b=0\,,$ [/mm] also [mm] $a=b\,.$ [/mm]

Wie Du siehst: Der Widerspruch steckt hier auch drin, er ist nämlich in 1.
enthalten!

(P.S. Wie ich gerade nachträglich festgestellt habe, hatte MaslanyFanclub
Dir das i.W. so in seinen Mitteilungen auch schon geschrieben...)

Gruß,
  Marcel

Bezug
        
Bezug
Grenzw. einer Folge eindeutig: Antwort
Status: (Antwort) fertig Status 
Datum: 16:18 Mi 20.08.2014
Autor: Marcel

Hallo,

> Hallo
>  ich habe eine kurze Frage bezüglich des Beweises, dass
> der Grenzwert einer Folge in K= [mm]\mathbb{R}[/mm] oder [mm]\mathbb{C}[/mm]
> eindeutig ist.
>  In Ana1, wenn man Folgen in [mm]\mathbb{R}[/mm] oder [mm]\mathbb{C}[/mm]
> kennenlernt und betrachtet, dann wird der Beweis, dass
> Grenzwerte da eindeutig sind,  oftmals(?) über ein
> Widerspruchsbeweis geführt, wie etwa hier
> http://www.inf.fu-berlin.de/lehre/SS09/mafi2/teil3.pdf auf
> S.2.
> Ich habe den Beweis auch so in meinem Ana1skript stehen.
> Gibt es einen Grund, dass so zu beweisen? Ist das nicht
> etwas umständlicher als nötig?

ich habe auch mal einen alternativen Beweis im Angebot: Es gelte
[mm] $a_n \to [/mm] a$ und [mm] $a_n \to [/mm] b$ mit $a [mm] \not=b\,.$ [/mm] Setze [mm] $\epsilon:=|a-b|/4\,,$ [/mm] dann ist [mm] $\epsilon [/mm] > [mm] 0\,.$ [/mm] Folglich
existieren [mm] $N_1$ [/mm] und [mm] $N_2$ [/mm] mit

    [mm] $|a_n [/mm] -a | < [mm] \epsilon$ [/mm] für alle $n [mm] \ge N_1$ [/mm]

und

    [mm] $|a_n-b| [/mm] < [mm] \epsilon$ [/mm] für alle $n [mm] \ge N_2\,.$ [/mm]

Sei nun [mm] $N=\max\{N_1,\,N_2\}\,.$ [/mm] Dann folgt einerseits

    [mm] $|a_N-a| [/mm] < [mm] \epsilon=|a-b|/4$ [/mm]

und damit andererseits (beachte $|x-y| [mm] \ge |\;|x|-|y|\;|$) [/mm]

    [mm] $|a_N-b|=|(a_N-a)-(b-a)|$ $\ge$ $|\;|a_N-a|-|b-a|\;|$ [/mm]

    [mm] $\blue{\stackrel{\substack{\text{bea.: }\\0 \le |a_N-a| < |b-a|}}{=}}$ $|b-a|-|a_N-a| [/mm] > [mm] |b-a|-\frac{|b-a|}{4}=\frac{3}{4}|b-a|={3}\epsilon\,.$ [/mm]

Dies widerspricht

    [mm] $|a_N-b| [/mm] < [mm] \epsilon=\frac{1}{4}|b-a|\,.$ [/mm]

Fazit: Wenn [mm] $a_n \to a\,,$ [/mm] so kann [mm] $a_n \to [/mm] b$ für $b [mm] \not=a$ [/mm] nicht(!) gelten.

Gruß,
  Marcel

Bezug
                
Bezug
Grenzw. einer Folge eindeutig: zum alternativen Beweis...
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:25 Mi 20.08.2014
Autor: Marcel

P.S. Ich denke, der Vorteil des alternativen Beweises besteht vor allem darin,
dass man sich die Überlegungen, die dort zum Tragen kommen, gut an einer
Skizze veranschaulichen kann.

Bezug
                        
Bezug
Grenzw. einer Folge eindeutig: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:24 Do 21.08.2014
Autor: drossel

Oh man, wieso sehe ich sowas nicht selbst?! Ich hab nun verstanden was ihr meint. Vielen vielen Dank für eure Erläuterungen, Erklärungen, Beweise, die ganzen Bemühungen. Es kommt jetzt bei mir dazu keine weitere Frage mehr auf. Das "umständlicher als nötig" aus dem Startbeitrag nehme ich zurück, muss vorsichtiger sein. Der Beweis wie im Skript zb ist dann mehr als gerechtfertigt. Wünschte ich könnte mich irendwie bei euch revangieren als dankeschön (ich frag ja auch sonst hier im Forum sehr viel nach)
Liebe Grüße

Bezug
                                
Bezug
Grenzw. einer Folge eindeutig: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:41 Do 21.08.2014
Autor: Marcel

Hi,

> Oh man, wieso sehe ich sowas nicht selbst?! Ich hab nun
> verstanden was ihr meint. Vielen vielen Dank für eure
> Erläuterungen, Erklärungen, Beweise, die ganzen
> Bemühungen. Es kommt jetzt bei mir dazu keine weitere
> Frage mehr auf. Das "umständlicher als nötig" aus dem
> Startbeitrag nehme ich zurück, muss vorsichtiger sein.

ich fand' Deine Frage jetzt nicht Fehl am Platze, im Gegenteil, ich finde es
gut, wenn so etwas wie hier hinterfragt wird.

> Der Beweis wie im Skript zb ist dann mehr als gerechtfertigt.
> Wünschte ich könnte mich irendwie bei euch revangieren
> als dankeschön (ich frag ja auch sonst hier im Forum sehr
> viel nach)

Das Forum ist doch für Fragen da. :-)

Gruß,
  Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]