www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Elektrotechnik" - Grenzfrequenz
Grenzfrequenz < Elektrotechnik < Ingenieurwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Elektrotechnik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzfrequenz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:18 Mo 14.01.2013
Autor: mathefreak89

Aufgabe
Wir haben den Betrag der Übergangsfunktion

[mm] T=\bruch{R_2}{\sqrt{(R_1+R_2)^2+(wL)^2}} [/mm]

Wir benötigen hierbei die Phase und die Grenzfrequenz?

Die Übertragsfunktion haben wir aus der Schaltung erstellt und diese ist laut Lösung richtig.

Allerdings scheitern wir jetzt daran die Grenzfrequenz und die Phase zu bestimmen.

Bitte dringend um Hilfe!

Danke im Voraus
mathefreak

        
Bezug
Grenzfrequenz: Antwort
Status: (Antwort) fertig Status 
Datum: 14:41 Mo 14.01.2013
Autor: leduart

Hallo
da man das nicht aus T ablesen kann, musst du die Schaltung skizzieren oder beschreiben.
gruss leduart

Bezug
                
Bezug
Grenzfrequenz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:04 Mo 14.01.2013
Autor: mathefreak89

das sollte schon gehen wenn man die Funktion für hohe und niedrige Frequenzen betrachtet!

und die Phase müsste man daraus irgendwie mit

[mm] arctan(\bruch{{Im}}{{Re}} [/mm] bekommen

Bezug
                        
Bezug
Grenzfrequenz: Antwort
Status: (Antwort) fertig Status 
Datum: 15:19 Mo 14.01.2013
Autor: reverend

Hallo mathefreak,

hilft Dir []das hier weiter?

Vielleicht verrätst Du trotzdem mal, um was für eine Schaltung es geht.

Grüße
reverend


Bezug
                        
Bezug
Grenzfrequenz: 3 dB
Status: (Antwort) fertig Status 
Datum: 16:37 Mo 14.01.2013
Autor: Infinit

Hallo mathefreak,
es gibt unterschiedliche Definitionen der Grenzfrequenz, aber hier ist wohl die 3dB-Grenzfrequenz gemeint. Diese Frequenz kann man bestimmen, indem man ausrechnet, bei welcher Frequenz die Spannungsübertragungsfunktion auf das [mm] \bruch{1}{\wurzel{2}[/mm]-fache der Gleichspannungsübertragungsfunktion gesunken ist. Für [mm] \omega =0 [/mm] hast Du eine Übertragungsfunktion
[mm] T(\omega=0) = \bruch{R2}{R1+R2} [/mm]
Für welches Omega gilt nun
[mm] T(\omega = \omega_g)=\bruch{R2}{\wurzel{2} (R1+R2) [/mm]
L muss dabei gegeben sein.

Aus dem Arcustangens der komplexen Übertragungsfunktion ergibt sich dann die Phase. Bei einer komplexen Übertragungsfunktion mit Zähler und Nenner
[mm] T = \bruch{A+jB}{C+jD} [/mm] gilt dabei
[mm] \varphi = \arctan(\bruch{B}{A}) - \arctan(\bruch{D}{C})[/mm]
Viele Grüße,
Infinit


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Elektrotechnik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]