Graphenverl. von Funkt.-schar < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 20:30 Fr 27.08.2010 | Autor: | lafille |
Aufgabe | Betrachten Sie die Funktionenschar zu [mm] fk(x)=x^k*e^x [/mm] für [mm] k\in\IN.
[/mm]
a) Untersuchen Sie mithilfe von Teilfunktionen, welche Graphenverläufe die Funktionen dieser Schar aufweisen.
b) Bestimmen Sie in Abhängigkeit von k, wie viele Extrempunkte und Wendepunkte der Graph von fk hat. |
zu a): ich bin hier ein bisschen überfordert, weil ich nicht weiß, welche Möklichkeiten ich alle untersuchen muss (wie verändert sich der Graph wenn k positiv/negativ ist, k größer/kleiner wird). Was ist noch wichtig und wie finde ich das heraus? Wäre lieb, wenn mir jemand erklären könnte wie ich es machen muss und mir sagen könnte was die Lösung ist, damit ich danach kontrollieren kann, ob ich alles richtig gemacht und verstanden habe.
zu b): Muss ich da einfach nur die Ableitungen bilden und die Extrem- und Wendepunkte herausfinden, wie in einer normalen Kurvendiskussion oder habe ich einen Denkfehler und es gibt einen Haken?
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 21:01 Fr 27.08.2010 | Autor: | chrisno |
> Betrachten Sie die Funktionenschar zu [mm]fk(x)=x^k*e^x[/mm] für
> [mm]k\in\IN.[/mm]
> zu a): ich bin hier ein bisschen überfordert, weil ich
> nicht weiß, welche Möklichkeiten ich alle untersuchen
> muss (wie verändert sich der Graph wenn k positiv/negativ
> ist, k größer/kleiner wird). Was ist noch wichtig und wie
> finde ich das heraus? Wäre lieb, wenn mir jemand erklären
> könnte wie ich es machen muss und mir sagen könnte was
> die Lösung ist, damit ich danach kontrollieren kann, ob
> ich alles richtig gemacht und verstanden habe.
Die Lösung bekommst Du erst einmal nicht. Mein übicher Tipp heißt: fang einfach mal an.
Indem Du ein paar Fälle rechnest, entwickelst Du eine Idee, was so los ist. Dann plotte ein paar der Funktionen und schau dir die Graphen an. Dann gehst Du wieder zurück und bearbeitest das Problem systematisch.
Also: Falls bei Euch $0 [mm] \in \IN$, [/mm] dann beginne mit $k=0$. Der Fall $k < 0$, den Du ansprichst, ist von der Aufgabe nicht vorgesehen, falls Du sie richtig hingeschrieben hast.
Nachdem ich die Aufgabe noch einmal gelesen habe, frage ich nun: Was sind Teilfunktionen? Ich vermute mal, dass hier eine Darstellung der Funktion als Produkt gemeint ist. [mm] $e^x$ [/mm] kennst Du, da weißt Du, dass an der Stelle 0 der Funktionswert 1 ist. Also hast Du dort einen Faktor 1, und danach wird es mehr, davor ist er kleiner als 1. [mm] $x^k$ [/mm] kennst Du auch. Im Bereich $x<0$ macht [mm] $e^x$ [/mm] die Funktion [mm] $x^k$ [/mm] "platt". Das Produkt ist dort immer [mm] $\ne [/mm] 0$. Wann ist es $>0$ beziehungsweise $<0$?
Was passiert an der Stelle $x=0$? Für $x>0$ ist die Lage übersichtlich, weil ....?
> zu b): Muss ich da einfach nur die Ableitungen bilden und
> die Extrem- und Wendepunkte herausfinden, wie in einer
> normalen Kurvendiskussion oder habe ich einen Denkfehler
> und es gibt einen Haken?
Du sollst Ableiten. Aus der Betrachtung in a) solltest Du nun wissen, was passieren wird.
Es gibt k, bei denen ein lokales Minimum entsteht. Wegen des asymptotischen Verlaufs für $x [mm] \to -\infty$ [/mm] muss sich dann noch ein lokales Maximum finden lassen. Dazwischen muss ein Wendepunkt liegen. Einen weiteren Wendepunkt brauchst Du, um in die Asymptote einzubiegen.
Es gibt andere k, bei denen findest Du an einer anderen Stelle ein lokales Minimum. Wieder brauchst Du einen Wendepunkt zum Einbiegen in die Asysmptote. Mehr Wendepunkte sehe ich ohne zu rechnen nicht.
|
|
|
|