www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Graphen beschreiben
Graphen beschreiben < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Graphen beschreiben: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:31 Mo 21.11.2005
Autor: Freak84

Hi leute ich habe hier ein Problem mit dem Kurventyp

Welche Kurventypen werden in  [mm] E^{2} [/mm] durch

(a)  [mm] 9x^{2} [/mm] + [mm] 4y^{2} [/mm] + 12xy + 2x - 2y + 3 = 0
(b)  [mm] 8x^{2} [/mm] + [mm] 5y^{2} [/mm] +  4xy + 12x + 18y - 19 = 0

beschrieben ??

Ich habe mir die Kurven mal zeichen lassen und auch durch ausprobieren habe ich auch rausbekommen wie du Kurven aussehen aber wie kann ich es koreckt beschreiben wie ich aus diese Kurven komme.
Gibt es da ein Verfahren wie man sowas macht ??

Vielen Dank
Freak


        
Bezug
Graphen beschreiben: Erklärung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:13 Mo 21.11.2005
Autor: bravo

Hey Michael,
habe die gleiche aufgabe zu bewältigen. Habe mich bisher allerdings erst mit anderen aufgaben beschäftigt und kann bisher nichts hilfreiches dazu beitragen.
Vielleicht kannst du aber erklären was du bisher gemacht hast und wie du glaubst, dass die graphen aussehen.

Wäre nett wenn etwas dazu schreiben könntest.


Gruß, Sebastian

Bezug
        
Bezug
Graphen beschreiben: Antwort
Status: (Antwort) fertig Status 
Datum: 14:38 Mi 23.11.2005
Autor: Toellner

Hallo Kuebi,

auf die Schnelle:
das sind Funktionen der Form [mm] f(\vec{z}) [/mm] = [mm] \vec{z}^{t}A\vec{z} [/mm] + [mm] \vec{b}^{t}\vec{z} [/mm] + [mm] \vec{c}, [/mm] daher quadratische Funktionen [mm] (\vec{z}=\vektor{x\\y}). [/mm]
D.h:, wenn Du irgend eine Gerade durch die x-y-Ebene legst und f auf diese Gerade beschränkst, ehältst Du normale Parabeln. Leider können sie in eine Richtung nach oben geöffnet sein, in eine andere nach unten. Dann hast Du einen Sattelpunkt. Ansonsten ein globales Maximum bzw. Minimum, und zwar dann, wenn A symmetrisch und definit ist.
Die Kurven der Art [mm] F(\vec{z}) [/mm] = k für Konstanten k sind "Höhenlinien", und zwar Ellipsen (A pos. o. neg. definit) oder Hyperbeln.

Gruß, Richard



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]