www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Moduln und Vektorräume" - Gram'sche Matrix
Gram'sche Matrix < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gram'sche Matrix: Nachfrage
Status: (Frage) beantwortet Status 
Datum: 20:07 Mo 07.04.2008
Autor: TMV

Hallo,

in einer Aufgabe war nach einer Matrix gefragt, deren zugehörige Bilinearform o, symmetrisch, aber nicht positiv definit ist. Als einfachste Lösung wurde
wurde A=(-1) angegeben, weil o(u,v)= -uv (deswegen symmetrisch) und o(1,1)=-1, also nicht positiv definit ist.
Nur leider weiß ich nicht, wie man rechnerisch auf o(u,v)= -uv und o(1,1)=-1 kommt! Könnte mir das bitte jemand erklären?
Danke
TMV

        
Bezug
Gram'sche Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 22:37 Mo 07.04.2008
Autor: SEcki


> in einer Aufgabe war nach einer Matrix gefragt, deren
> zugehörige Bilinearform o, symmetrisch, aber nicht positiv
> definit ist. Als einfachste Lösung wurde
>  wurde A=(-1) angegeben, weil o(u,v)= -uv (deswegen
> symmetrisch) und o(1,1)=-1, also nicht positiv definit
> ist.

Das ist also eine ein-dimensionale Matrix, ja?

>  Nur leider weiß ich nicht, wie man rechnerisch auf o(u,v)=
> -uv und o(1,1)=-1 kommt! Könnte mir das bitte jemand
> erklären?

Was meinst du damit? Es ist halt ein Beispiel - kannst du es nicht nachvollziehen, oder was?

Es ist halt naheliegend eine positiv definite Matrix zu nehmen - und die dann mit (-1) zu multiplizieren, dann wird sie nämlich negativ definit.

SEcki

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]