www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Numerik linearer Gleichungssysteme" - Gram-Schmidt Orthogonalisierun
Gram-Schmidt Orthogonalisierun < Lin. Gleich.-systeme < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Numerik linearer Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gram-Schmidt Orthogonalisierun: Frage
Status: (Frage) beantwortet Status 
Datum: 23:46 Sa 18.12.2004
Autor: Arthos

In welchen Fällen versagt die Gram-Schmidt-Orthogonalisierung?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Gram-Schmidt Orthogonalisierun: Antwort
Status: (Antwort) fertig Status 
Datum: 14:28 So 19.12.2004
Autor: Paulus

Vermutlich, wenn der Vektorraum überabzählbar unendliche Dimension besitzt.

Bezug
                
Bezug
Gram-Schmidt Orthogonalisierun: Idee
Status: (Frage) beantwortet Status 
Datum: 20:39 So 19.12.2004
Autor: Arthos

Hi, danke für die Antwort, aber es wird schon angenommen dass es Endlich ist (es ist in einen Program) ,

ich habe bis jetzt gefunden das die Spalten linear unabhÄngig sein müssen. Gibt es sonst noch etwas?



Bezug
                        
Bezug
Gram-Schmidt Orthogonalisierun: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:37 Mo 20.12.2004
Autor: Julius

Hallo!

> ich habe bis jetzt gefunden das die Spalten linear
> unabhÄngig sein müssen. Gibt es sonst noch etwas?

Nein, dann funktioniert es im endlichdimensionalen Fall immer. :-)

Liebe Grüße
Julius


Bezug
                                
Bezug
Gram-Schmidt Orthogonalisierun: Idee
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:55 Mo 20.12.2004
Autor: Arthos

Ich habe auch noch gefunden das die Matrix nicht singulär sein darf ;)

Bezug
                                        
Bezug
Gram-Schmidt Orthogonalisierun: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:32 Mo 20.12.2004
Autor: Paulus

Du willst uns aber nicht etwa veräppeln?

Bezug
                                        
Bezug
Gram-Schmidt Orthogonalisierun: Fehler
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:14 Di 21.12.2004
Autor: Arthos

die Matrix muss doch nicht singulär sein.. mein Fehler :D

Bezug
                                                
Bezug
Gram-Schmidt Orthogonalisierun: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:18 Mi 22.12.2004
Autor: Paulus

... und so nimmt die Veräppelung ihren Lauf!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Numerik linearer Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]