www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Skalarprodukte" - Gram-Schmidt Orthogonalisierte
Gram-Schmidt Orthogonalisierte < Skalarprodukte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Skalarprodukte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gram-Schmidt Orthogonalisierte: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:02 So 23.08.2009
Autor: Joan2

Hallo,
kann mir jemand erklären wie folgende Gleichung zustande kommt:

[mm] (\delta [/mm] - [mm] \bruch{1}{4})^{\bruch{i-1}{2}}\parallel b'_{1}\parallel \ge (\delta [/mm] - [mm] \bruch{1}{4})^{\bruch{n-1}{2}}\parallel b_{1} \parallel [/mm] , wobei b' eine orthogonalisierte Basis ist

[mm] (\delta [/mm] - [mm] \bruch{1}{4})^{\bruch{i-1}{2}} \ge (\delta [/mm] - [mm] \bruch{1}{4})^{\bruch{n-1}{2}} [/mm] gilt, weil i [mm] \le [/mm] n

Was ich nicht verstehe, warum ist [mm] \parallel b'_{1}\parallel \ge \parallel b_{1}\parallel [/mm] ?
[mm] {b'}_{1} [/mm] ist doch othogonalisiert, dann müsste es doch kürzer, also kleiner als [mm] b_{1} [/mm] sein, oder?


Liebe Grüße
Joan


        
Bezug
Gram-Schmidt Orthogonalisierte: Antwort
Status: (Antwort) fertig Status 
Datum: 21:55 So 23.08.2009
Autor: felixf

Hallo Joan

>  kann mir jemand erklären wie folgende Gleichung zustande
> kommt:
>  
> [mm](\delta[/mm] - [mm]\bruch{1}{4})^{\bruch{i-1}{2}}\parallel b'_{1}\parallel \ge (\delta[/mm]
> - [mm]\bruch{1}{4})^{\bruch{n-1}{2}}\parallel b_{1} \parallel[/mm] ,
> wobei b' eine orthogonalisierte Basis ist
>  
> [mm](\delta[/mm] - [mm]\bruch{1}{4})^{\bruch{i-1}{2}} \ge (\delta[/mm] -
> [mm]\bruch{1}{4})^{\bruch{n-1}{2}}[/mm] gilt, weil i [mm]\le[/mm] n

Ok. Ich wollte schon fragen, was $i$ ist, bzw. was es mit der Aufgabe zu tun hat.

> Was ich nicht verstehe, warum ist [mm]\parallel b'_{1}\parallel \ge \parallel b_{1}\parallel[/mm]
> ?
> [mm]{b'}_{1}[/mm] ist doch othogonalisiert, dann müsste es doch
> kürzer, also kleiner als [mm]b_{1}[/mm] sein, oder?

Nun, es ist doch [mm] $b_1 [/mm] = [mm] b_1'$, [/mm] es wird ja nicht normalisiert.

LG Felix


Bezug
                
Bezug
Gram-Schmidt Orthogonalisierte: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:28 So 23.08.2009
Autor: Joan2

Wäre [mm] {b'}_{1} [/mm] nun [mm] {b'}_{3}, [/mm] dann ist [mm] {b'}_{3} \le b_{3}, [/mm] oder?

Bezug
                        
Bezug
Gram-Schmidt Orthogonalisierte: Antwort
Status: (Antwort) fertig Status 
Datum: 01:34 Mo 24.08.2009
Autor: felixf

Hallo!

> Wäre [mm]{b'}_{1}[/mm] nun [mm]{b'}_{3},[/mm] dann ist [mm]{b'}_{3} \le b_{3},[/mm]
> oder?

Da fehlt irgendwas. Meinst du die Normen von [mm] $b_3'$ [/mm] und [mm] $b_3$? [/mm]

Ganz allgemein gilt [mm] $\| b_i' \| \le \| b_i \|$, [/mm] da [mm] $b_i'$ [/mm] der eindeutige Vektor der Form [mm] $b_i [/mm] + [mm] \sum_{j=1}^{i-1} \lambda_j b_j$ [/mm] ist, dessen Norm minimal ist von allen [mm] $\lambda_1, \dots, \lambda_{i-1} \in \IR$. [/mm] (Das ist gerade dazu aequivalent, dass [mm] $b_i [/mm] + [mm] \sum_{j=1}^{i-1} \lambda_j b_j$ [/mm] orthogonal zu [mm] $b_1, \dots, b_{i-1}$ [/mm] ist.)

LG Felix


Bezug
                                
Bezug
Gram-Schmidt Orthogonalisierte: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 02:09 Mo 24.08.2009
Autor: Joan2

Ah, super :) Danke für die Hilfe

Liebe Grüße
Joan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Skalarprodukte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]