www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra Sonstiges" - Gradient bestimmen
Gradient bestimmen < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gradient bestimmen: Tipp
Status: (Frage) beantwortet Status 
Datum: 16:29 Mo 27.01.2014
Autor: Bindl

Aufgabe
Gegeben sei die Funktion f : [mm] R^2 [/mm] -> R, x -> f(x) = x1 + x22. Bestimmen Sie den Gradienten von f. Skizzieren Sie die Niveaumengen zu den Niveaus 0, 2 und 4 in der x1-x2-Ebene und den Gradienten von f in einem Koordinatensystem.

Hi zusammen,

habe hier bisher folgendes gemacht.
[mm] D_1(x_1,x_2) [/mm] = 1
[mm] D_2(x_1,x_2) [/mm] = [mm] 2x_2 [/mm]

f = (1 , [mm] 2x_2) [/mm]
grad f = [mm] \begin{pmatrix} 1 \\ 2x_2 \end{pmatrix} [/mm]

Niveaumengen : [mm] N_f(c) [/mm] = {x [mm] \in D_f: [/mm] f(x) = c} [mm] \subset R^m [/mm]
fr m=2 sind es Höhenlinien
Das wurde bei ums im Ksirpt kurz beschrieben und das wars dann aber auch schon wieder.

Ich denke mal 0,2&4 sind die c-Werte.
Je nach c wird eine Funktion entstehen die darauf hinweißt ob es eine Parabell oder so ist.
Das ist alles was ich darüber weiß. Wie ich c anzuwenden habe und wie dadurch eine Funktion ensteht anhand der ich sagen kann was es für eine Funktion ist weiß ich leider nicht.

        
Bezug
Gradient bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:44 Mo 27.01.2014
Autor: Richie1401

Hallo,

> Gegeben sei die Funktion f : [mm]R^2[/mm] -> R, x -> f(x) = x1 +
> x22. Bestimmen Sie den Gradienten von f. Skizzieren Sie die
> Niveaumengen zu den Niveaus 0, 2 und 4 in der x1-x2-Ebene
> und den Gradienten von f in einem Koordinatensystem.

Ja, na wenn du die Darstellung schon einmal weißt, dann ist doch gut.

Also:

f(x)=c, damit haben wir bspw. mit c=2:

   [mm] x_1+{x_2}^2=c=2 [/mm]

Setze mal [mm] x_1=x [/mm] und [mm] x_2=y. [/mm] Dann haben wir doch

   [mm] x+y^2=2 \gdw y=\pm\sqrt{2-x} [/mm]

Nun weißt du doch aber, wie man das zeichnet, oder?

Bezug
                
Bezug
Gradient bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:31 Di 28.01.2014
Autor: Bindl

Hi,

danke für die Hilfe. Also die Niveaumengen konnte ich nun einzeichnen.

Wie skizziere ich den Gradienten f = [mm] \begin{pmatrix} 1 \\ 2x_2 \end{pmatrix} [/mm] ?

Bezug
                        
Bezug
Gradient bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 11:43 Di 28.01.2014
Autor: chrisno


> Hi,
>  
> danke für die Hilfe. Also die Niveaumengen konnte ich nun
> einzeichnen.
>  
> Wie skizziere ich den Gradienten f = [mm]\begin{pmatrix} 1 \\ 2x_2 \end{pmatrix}[/mm]
> ?

Du wählst Dir einige Punkte mit den Koordinaten [mm] $(x_1; x_2)$ [/mm] aus und zeichnest an die Punkte Vektoren [mm]\begin{pmatrix} 1 \\ 2x_2 \end{pmatrix}[/mm] ein. Also im Punkt (3; 3) ist der Vektor [mm]\begin{pmatrix} 1 \\ 2\cdot 3 \end{pmatrix}[/mm] einzuzeichnen.


Bezug
                                
Bezug
Gradient bestimmen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:47 Di 28.01.2014
Autor: Bindl

Ok, danke.
Dann mache ich das mal mit 3 Punkten. Das sollte genügen

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]