www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Gradient
Gradient < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gradient: Gradient von 1/r
Status: (Frage) beantwortet Status 
Datum: 21:23 Mo 10.03.2008
Autor: uffisch

Hi zusammen,

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

In meinem Physikbuch (Demtröder Exp-Phys II, Seite 14) geht es um das
Dipolpotential und es wird behauptet, dass gilt:
grad(1/r) = [mm] -\vec{r}/(r^3) [/mm]
was ich aber nicht nachvollziehen kann. Es ist doch

grad(1/r) = [mm] \vektor{ {\bruch{\partial (1/r)}{\partial x }} \\ {\bruch{\partial (1/r)}{\partial y }} \\ {\bruch{\partial (1/r)}{\partial z }} } [/mm]

denn so ist ja der Gradient definiert. Nun kann ich natürlich erstmal nicht partiell nach x,y,z ableiten, da der Term nur in Abhängigkeit von r ist. Also hab ich mir überlegt, dass man r doch auch als r = [mm] \wurzel{x^2+y^2+z^2} [/mm] angeben kann.
Partielle Differentiation ergibt aber bei mir z.b.:

[mm] \bruch{\partial (1/\wurzel{x^2+y^2+z^2})}{\partial x} [/mm] = - [mm] \bruch{x}{(x^2+y^2+z^2)^{1.5}} [/mm] = - [mm] \bruch{x}{r^{1,5}} [/mm]

was dann insgesamt ergibt: grad(1/r) = - [mm] \bruch{\vec{r}}{r^{1,5}} [/mm] aber nicht das gewünschte Ergebnis ist. Kann mir vielleicht jemand weiterhelfen? Bin mir eigentlich recht sicher, dass ich zumindest beim Differnzieren keinen Fehler gemacht hab, oder darf ich den Ansatz mit [mm] r=\wurzel{x^2+y^2+z^2} [/mm] nicht machen. Aber wie dann?

Vielen Dank, Daniel Weber

        
Bezug
Gradient: Antwort
Status: (Antwort) fertig Status 
Datum: 21:29 Mo 10.03.2008
Autor: rainerS

Hallo Daniel!

> Hi zusammen,
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
> In meinem Physikbuch (Demtröder Exp-Phys II, Seite 14) geht
> es um das
>  Dipolpotential und es wird behauptet, dass gilt:
> grad(1/r) = [mm]-\vec{r}/(r^3)[/mm]
>  was ich aber nicht nachvollziehen kann. Es ist doch
>  
> grad(1/r) = [mm]\vektor{ {\bruch{\partial (1/r)}{\partial x }} \\ {\bruch{\partial (1/r)}{\partial y }} \\ {\bruch{\partial (1/r)}{\partial z }} }[/mm]
>  
> denn so ist ja der Gradient definiert. Nun kann ich
> natürlich erstmal nicht partiell nach x,y,z ableiten, da
> der Term nur in Abhängigkeit von r ist. Also hab ich mir
> überlegt, dass man r doch auch als r = [mm]\wurzel{x^2+y^2+z^2}[/mm]
> angeben kann.
>  Partielle Differentiation ergibt aber bei mir z.b.:
>  
> [mm]\bruch{\partial (1/\wurzel{x^2+y^2+z^2})}{\partial x}[/mm] = -
> [mm]\bruch{x}{(x^2+y^2+z^2)^{1.5}}[/mm] = - [mm]\bruch{x}{r^{1,5}}[/mm]

Der letzte Schritt ist falsch, denn

[mm] -\bruch{x}{(x^2+y^2+z^2)^{1.5}} = - \bruch{x}{(\red{r^2})^{1,5}} = - \bruch{x}{r^3} [/mm]

und dann passt's wieder.

Übrigens kann dein Ergebnis schon deswegen nicht stimmen, weil der Gradient von 1/r die Dimension [mm] $\text{(Länge)}^{-2}$ [/mm] haben muss.

Viele Grüße
   Rainer

Bezug
                
Bezug
Gradient: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:32 Mo 10.03.2008
Autor: uffisch

Vielen Dank,

sorry hab ich übersehen *schäm*

Liebe Grüße, Daniel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]