www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Eigenwerte" - Grad Minimalpolynom
Grad Minimalpolynom < Eigenwerte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grad Minimalpolynom: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 23:37 So 23.05.2010
Autor: Lyrn

Aufgabe
Beweise oder wiederlege: Ist [mm] f : X \to X [/mm] ein Endomorphismus eines endlich dimensionalen Vektorraums und [mm]a \in X [/mm], sodass [mm] a,f(a),...,f^{r-1}(a)[/mm] linear unabängig sind, so ist der Grad des Minimalpolynoms mindestens [mm]r[/mm].

Hallo,
ich nehme an, dass die Aussage falsch ist.
Um dies zu beweisen muss ich ja "nur" ein Gegenbeispiel finden.
Mir fällt es aber schwer solch ein Gegenbeispiel zu finden.

Kann mir dabei jemand behilflich sein?

Gruß

        
Bezug
Grad Minimalpolynom: Antwort
Status: (Antwort) fertig Status 
Datum: 00:48 Mo 24.05.2010
Autor: SEcki


>  ich nehme an, dass die Aussage falsch ist.

Die Aussage ist richtig. Jetzt überleg mal in die Richtung, wenn du nicht mehr weiterkommst, melde dich.

SEcki

Bezug
                
Bezug
Grad Minimalpolynom: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 01:29 Mo 24.05.2010
Autor: Lyrn

Also falls die Aussage stimmt muss ich laut Vorlesung die Definition vom Minimalpolynom benutzen:

Sei [mm]V[/mm] ein [mm]K-VR[/mm]; Dimension endlich; [mm]\phi: V \to V[/mm] Endomorphismus.
Sei [mm]f(t) \in K[t][/mm] normiert und grad [mm]f(t)[/mm] minimal mit [mm]f(\phi)=Nullabbildung[/mm].
Dann heißt [mm]f(t)[/mm] Minimalpolynom von [mm] \phi. [/mm]


Ich weiß aber nicht wie ich das jetzt anwenden soll, um die Aussage zu beweisen.

Ein Ansatz wär mir eine große Hilfe!

Danke schonmal.




Bezug
                        
Bezug
Grad Minimalpolynom: Antwort
Status: (Antwort) fertig Status 
Datum: 01:35 Mo 24.05.2010
Autor: SEcki


> Also falls die Aussage stimmt muss ich laut Vorlesung die
> Definition vom Minimalpolynom benutzen:

Öhm. Das musst du soweiso?

> Ich weiß aber nicht wie ich das jetzt anwenden soll, um die Aussage zu beweisen.
>  
> Ein Ansatz wär mir eine große Hilfe!

Du sollst ja auch über die Übung selber nachdenken. Als weitere Hilfe: was ist denn [m]f(\phi)[/m] genau? Setz mal das dann ein ... wie sieht das aus?

SEcki

Bezug
                                
Bezug
Grad Minimalpolynom: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:07 Mo 24.05.2010
Autor: Lyrn


> Als weitere Hilfe: was ist denn [m]f(\phi)[/m] genau? Setz mal das
> dann ein ... wie sieht das aus?

Ich tu mich mit der Aufgabe ziemlich schwer.
Ich weiß zwar dass [m]f(\phi)[/m] die Nullabbildung sein muss, aber ich habe ja kein Minimalpolynom [m]f(t)[/m] in das ich [mm] \phi [/mm] einsetzen könnte.

Ich weiß nur dass [mm]a,f(a),...,f^{r-1}(a)[/mm] linear unabhängig ist.


Mit diesen Grundlagen schaff ich es irgendwie nicht einen Ansatz zu schreiben, den ich hier zur Diskussion stellen könnte :/

Bezug
                                        
Bezug
Grad Minimalpolynom: Antwort
Status: (Antwort) fertig Status 
Datum: 20:12 Mo 24.05.2010
Autor: SEcki


>  Ich weiß zwar dass [m]f(\phi)[/m] die Nullabbildung sein muss,
> aber ich habe ja kein Minimalpolynom [m]f(t)[/m] in das ich [mm]\phi[/mm]
> einsetzen könnte.

Doch?! Widerspruchsannahme: f hat Grad kleiner r.

> Ich weiß nur dass [mm]a,f(a),...,f^{r-1}(a)[/mm] linear unabhängig
> ist.

Betrachte [m]f(\phi)(v)=0[/m]!

SEcki

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]