www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Trigonometrische Funktionen" - Goniometrische Gleichung
Goniometrische Gleichung < Trigonometr. Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Trigonometrische Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Goniometrische Gleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:25 Sa 17.01.2009
Autor: ChopSuey

Aufgabe
$\ 2 [mm] \sin^2 \bruch{x}{2} [/mm] + [mm] \cos [/mm] 2x = 0 $

Hallo,
bei dieser Aufgabe komm ich leider nicht sehr weit.

Ich hab folgendes versucht:

$\ 2 [mm] \sin^2 \bruch{x}{2} [/mm] + [mm] \cos [/mm] 2x = 0 $

$\ 2 [mm] \sin^2 \bruch{x}{2} [/mm] + [mm] \cos^2 [/mm] x  - [mm] \sin^2 [/mm] x = 0 $

$\ 2 [mm] \sin^2 \bruch{x}{2} [/mm] + (1- [mm] \sin^2x) [/mm] - [mm] \sin^2 [/mm] x = 0 $

$\ 2 [mm] \sin^2 \bruch{x}{2} [/mm] + 1- 2 [mm] \sin^2x [/mm] = 0 $

Hier weiss ich dann nicht mehr weiter.
Kann ich denn hier den ganzen Term durch 2 teilen und ohne weiteres die Wurzel ziehen?

Würde mich über Hilfe freuen,
Vielen Dank

Grüße
ChopSuey



        
Bezug
Goniometrische Gleichung: Additionstheorem
Status: (Antwort) fertig Status 
Datum: 12:32 Sa 17.01.2009
Autor: Loddar

Hallo ChopSuey!


Wandle auch den Term mit [mm] $\bruch{x}{2}$ [/mm] in das Argument $x_$ um mittels (siehe []hier):
[mm] $$\sin^2\left(\bruch{x}{2}\right) [/mm] \ = \ [mm] \bruch{1-\cos(x)}{2}$$ [/mm]
Um auch anschließend ausschließlich [mm] $\cos(x)$-Terme [/mm] zu erhalten, solltest Du zu Beginn auch wählen:
[mm] $$\cos(2x) [/mm] \ = \ [mm] 2*\cos^2(x)-1$$ [/mm]

Gruß
Loddar


Bezug
                
Bezug
Goniometrische Gleichung: Vielen Dank
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:35 Sa 17.01.2009
Autor: ChopSuey

Hallo Loddar,

vielen Dank für die Tipps! Jetzt kann ich wieder weitermachen :-)

Gruß
ChopSuey

Bezug
                
Bezug
Goniometrische Gleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:22 Sa 17.01.2009
Autor: ChopSuey

Hallo,

eine Frage hätte ich da noch:

Ließe sich aus $\ [mm] \sin [/mm] (2x) = [mm] 2\sin(x)\cos(x) [/mm] $ folgendes Folgern:

$\ [mm] \sin^2 [/mm] (2x) = [mm] 2\sin^2(x) \cos^2(x) [/mm] $ ?


Bezug
                        
Bezug
Goniometrische Gleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 14:24 Sa 17.01.2009
Autor: reverend

Na, die Frage kannst Du Dir doch locker selbst beantworten. Einfach beide Seiten ganz quadrieren, auch die 2 rechts...

Bezug
                                
Bezug
Goniometrische Gleichung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:29 Sa 17.01.2009
Autor: ChopSuey

Ja, schon. Stimmt.
Ich dachte bloß, dass es möglich wäre, dass die 2 aus dem Argument unverändert nach vorne kommt.

Jetzt isses aber klar!

Vielen Dank
Grüße
ChopSuey

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Trigonometrische Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]