www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Gleichungssysteme" - Gls lösen
Gls lösen < Gleichungssysteme < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gls lösen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:13 Fr 16.09.2011
Autor: johnypfeffer

ich habe
s2(x)=a+bx+cx²+dx³

s2'(x)=3dx²+2cx+b
s2''(x)=6dx+2c
s2'''(x)=6d=12 --> d=2

ich hab vergessen wie es weiter geht also wie ich a.b.c bekommen

        
Bezug
Gls lösen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:17 Fr 16.09.2011
Autor: AT-Colt


> ich hab vergessen wie es weiter geht also wie ich a.b.c
> bekommen

Ich auch. Bzw. ich wusste es nie. Wie lautet denn die Aufgabenstellung? Du scheinst einen Wert für die dritte Ableitung der Funktion gegeben zu haben? Hast Du auch Werte für die niedrigeren Ableitungen?

Viele Grüße,

AT-Colt


Bezug
                
Bezug
Gls lösen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:07 Fr 16.09.2011
Autor: johnypfeffer

hab mal ein bild link mit der aufgabe geschickt
[Externes Bild http:///lh5.googleusercontent.com/-BbeBiOvzd7k/TnO5lSwcvyI/AAAAAAAAE4E/cjKD0uRcPbs/s1440/16092011314.jpg]


Bezug
                        
Bezug
Gls lösen: Antwort
Status: (Antwort) fertig Status 
Datum: 06:04 Sa 17.09.2011
Autor: angela.h.b.

Hallo,

gibt es besondere Gründe, die dagegen sprechen, die Aufgabe abzutippen?
Für Helfer ist die Präsentation der Aufgabe auf diese Weise ziemlich umständlich. Man kann ja nichts kopieren.

Weißt Du denn, was eine Splinefunktion ist? (Nachschlagen.)
Du mußt die a,b,c,d so wählen, daß an der Nahtstelle der beiden Funktionsäste sowohl die Funktionswerte als auch die 1. und 2. Ableitung übereinstimmen.

Gruß v. Angela


Bezug
                        
Bezug
Gls lösen: Antwort
Status: (Antwort) fertig Status 
Datum: 09:50 Sa 17.09.2011
Autor: ullim

Hi,

das was Angela schreibt heisst

[mm] S_1(1)=S_2(1) [/mm]

[mm] S_1'(1)=S_2'(1) [/mm]

[mm] S_1''(1)=S_2''(1) [/mm] und das was Du auch schon hingeschrieben hast

[mm] S_2'''(x)=12 [/mm]

Das ergibt zusammen ein lineares Gleichungssystem für a,b,c und d das gelöst werden muss. Für d hast Du schon die Lösung.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]