www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Globale Extrema
Globale Extrema < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Globale Extrema: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:53 Mo 27.09.2004
Autor: Alice

Hallo liebe Leute, ich möchte die globalen Extremwerte folgender Funktion in R+ bestimmen:

[mm]f(x)= x^{2}[/mm]

[mm]f'(x)=2x[/mm]
[mm]2x=0 \gdw x=0[/mm]

[mm]f(0)=0 \to[/mm] glob. Minimum

[mm] \limes_{x\rightarrow\infty}f(x)={x\rightarrow\infty} \to [/mm] glob. Maximum

Ich hab das aber noch nicht so oft gemacht und bin deswegen ein bisschen unsicher. Wenn kein Intervall gegeben ist, dessen Randpunkte man einbeziehen kann, dann berechnet man ja die Grenzwerte der Funktion, sowie die stationären Punkte, die sich durch nullsetzen der ersten Ableitung ergeben. Muss ich auch den unteren Grenzwert noch berechnen? Oder ist das wegen f(0)=0 hinfällig?

Falls ich etwas falsch gemacht habe, würde ich mich über eine (möglichst ausführliche) Erklärung sehr freuen!! :-)

Vielen Dank schonmal!

        
Bezug
Globale Extrema: Antwort
Status: (Antwort) fertig Status 
Datum: 19:44 Mo 27.09.2004
Autor: Paulus

Hallo Alice

> Hallo liebe Leute, ich möchte die globalen Extremwerte
> folgender Funktion in R+ bestimmen:
>  
> [mm]f(x)= x^{2}[/mm]
>  
> [mm]f'(x)=2x[/mm]
>  [mm]2x=0 \gdw x=0[/mm]
>  
> [mm]f(0)=0 \to[/mm] glob. Minimum
>  

Hier sollte man vermutlich noch begründen, warum es sich nicht nur um ein lokales Minimum handelt!

Ein globales Minimum ist ja dadurch gegeben, dass der Funktionswert an jeder anderen Stelle [mm] $\ge$ [/mm] dem bestimmten Minimun ist. Das sollte man noch formal tun.

> [mm]\limes_{x\rightarrow\infty}f(x)={x\rightarrow\infty} \to[/mm]
> glob. Maximum
>  

Wie gross ist denn jetzt das Globale Maximum. An welcher Stelle wird es angenommen?

Beachte bitte, dass [mm] $\infty$ [/mm] keine reele Zahl ist.

Es wird dir somit nicht gelingen, eine Stelle [mm] $x_{0}$ [/mm] zu finden, wo du dann behaupten kannst: jeder Funktionswert für $x [mm] \ne x_{0}$ [/mm] sei [mm] $\le f(x_{0})$. [/mm]

Die Funktion besitzt somit kein Globales Maximum.

Das wäre in der Tat anders, falls die Funktion auf eine echte Teilmenge von [mm] $\matbb{R}$ [/mm] eingeschränkt wäre, unter der Voraussetzung, dass $x$ nicht über alle Grenzen wächst (nach oben und nach unten) und abgeschlossen ist. Die Bedingung müsste man vielleich noch etwas exakter formulieren, aber ich denke, du weisst schon, was ich meine. Wir wollen nicht allzu mathematisch kleinlich sein! :-)

Mit lieben Grüssen

Paul

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]