www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "stochastische Prozesse" - Glivenko Cantelli Klasse Äquiv
Glivenko Cantelli Klasse Äquiv < stoch. Prozesse < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "stochastische Prozesse"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Glivenko Cantelli Klasse Äquiv: Tipp
Status: (Frage) überfällig Status 
Datum: 22:59 Di 05.04.2016
Autor: Rocky14

Hallo Leute,

ich habe zu nachfolgendem Skript ein paar Fragen. Es wäre super, wenn mir da jemand weiterhelfen kann.

https://www.google.de/url?sa=t&source=web&rct=j&url=https://ilias.unibe.ch/goto_ilias3_unibe_file_915739_download.html&ved=0ahUKEwj2-rirp_jLAhUHow4KHR7zARQQFggaMAA&usg=AFQjCNEgbahECgfY8CC1DgfqBlT3eF-Vcg&sig2=swySxx8iC7_Vrw-Qn9eQXw

Und zwar geht es um Kapitel 5. Dort steht direkt zu Anfang:

"Zunächst halten wir fest, dass folgende Aussagen äquivalent sind:
(5.1) [mm] $||P_n [/mm] - P||_ D [mm] \rightarrow [/mm] _p$ 0
(5.2) [mm] $E||P_n [/mm] - [mm] P||_D \rightarrow$ [/mm] 0
(5.3) [mm] $E||P_n^0|| \rightarrow [/mm] $ 0 mit [mm] $P_n^0 [/mm] := [mm] n^{-1} \sum_{i=1}^{n} \epsilon [/mm] _i [mm] \delta_X_i [/mm] $

Anschließend wird auch eine kurzer Hinweis zum Beweis gegeben, leider verstehe ich nicht ganz,  warum damit jetzt die Behauptung folgt. Ich schreibe mal kurz meine Überlegungen und Fragen dazu auf:

(5.1) <=> (5.2):
"folgt aus der Tatsache, dass  [mm] $||P_n [/mm] - [mm] P||_D$ [/mm] immer kleiner oder gleich  1 ist"
-> warum folgt damit die Behauptung?

(5.2)=>(5.3):
Es gilt [mm] $\dfrac {E||P_n - P||_D}{2} \le E||P_n^0||$. [/mm] Wenn nun also die linke Seite gegen 0 konvergiert, konvergiert aus Gründen der Stetigkeit auch die rechte Seite gegen 0.
Den Beweis von dieser Ungleichung habe ich verstanden.

(5.3)=>(5.2)
Hier soll folgende Ungleichung helfen:
[mm] $E||P_n^0|| \le 2E||P_n-P||_D+n^{-1/2} [/mm] $

Ich habe ein bisschen gegoogelt und herausgefunden, dass auch folgende Gleichung gilt:
[mm] $\dfrac {1}{2}E||P_n^0||-\dfrac {1}{2n^{1/2}} \le E||P_n-P||$ [/mm]
[mm] $\Leftrightarrow E||P_n^0||-\dfrac {1}{n^{1/2}} \le 2E||P_n-P||$ [/mm]
$ [mm] \Leftrightarrow E||P_n^0|| \le 2E||P_n-P||_D+n^{-1/2} [/mm] $

Leider bekomme ich keine der Ungleichungen bewiesen.
Ich habe bisher versucht:
[mm] $P_n^0 [/mm] = 1/n [mm] \sum_{i=1}^n \epsilon [/mm] _i [mm] \delta _X_i [/mm] $
$=1/n [mm] (\sum_{i \in {i \le n: \epsilon_i=1}}\epsilon [/mm] _i [mm] \delta _X_i +\sum_{i \in {i \le n: \epsilon_i=-1}}\epsilon [/mm] _i [mm] \delta _X_i) [/mm] $

[mm] $\Rightarrow [/mm] E [mm] (P_n^0) [/mm] = E (1/n [mm] \sum_{i=1}^n \epsilon [/mm] _i [mm] \delta _X_i [/mm] )$
[mm] $=\dfrac [/mm] {1}{n} [mm] (\sum_{i \in {i \le n: \epsilon_i=1}}\epsilon [/mm] _i [mm] \delta _X_i +\sum_{i \in {i \le n: \epsilon_i=-1}}\epsilon [/mm] _i [mm] \delta _X_i [/mm] )$
[mm] $=\dfrac [/mm] {1}{n} [mm] E(\sum_{i \in {i \le n: \epsilon_i=1}}\epsilon [/mm] _i [mm] \delta _X_i +\sum_{i \in {i \le n: \epsilon_i=-1}}\epsilon [/mm] _i [mm] \delta _X_i [/mm] )$
[mm] $\le \dfrac {1}{n^{1/2}}E(\sum_{i \in {i \le n: \epsilon_i=1}}\epsilon [/mm] _i [mm] \delta _X_i +\sum_{i \in {i \le n: \epsilon_i=-1}}\epsilon [/mm] _i [mm] \delta _X_i [/mm] )$
[mm] $\le \dfrac {1}{n^{1/2}} 2E(\sum_{i}\epsilon [/mm] _i [mm] \delta _X_i [/mm] )$

Nun weiß ich aber nicht, wie mir das helfen soll :(

Wäre wirklich super, wenn mir da jemand weiterhelfen kann.

        
Bezug
Glivenko Cantelli Klasse Äquiv: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:20 Mi 13.04.2016
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "stochastische Prozesse"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]